Aerodynamic whistle-based ultrasonic bat deterrents

REWI webinar

Anupam Sharma¹

Zhangming Zeng¹ Charlie van Horn² William N. Alexander²

¹Iowa State University

²Virginia Tech

Jul 29, 2025

Overview

Motivation

Challenge/Need/Gap

- Bat mortality at wind farms
- Curtailment effective but energy loss
- Ultrasonic deterrents effective in field
- Nacelle/tower-mounted ultrasonic deterrents do not protect outboard blade region

Idea/Technology

Blade-mounted ultrasonic deterrents driven by blade-relative air flow ightarrow passive

Impact

- Mitigate bat mortality at wind farms with minimal energy hit
- Cost savings: no/minimal curtailment w/ proposed deterrents

2

Nacelle- vs. blade-mounted systems

Nacelle-mounted

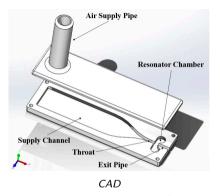
- Blade tips far from deterrent
- \bullet Ultrasound decays rapidly \to outer blade region not protected
- High source amplitude \rightarrow adverse impact on wild/farm life

Blade-mounted

- Deterrents placed where required
- \bullet Travel ~ 10 m \rightarrow low source amplitude

Concept

- Adaptation of dog (Galton's) whistle
- Working principle:
 - Flow instability + resonance → high-intensity (ultra)sound
 - \circ No moving parts \rightarrow robust design
- Multiple resonators for broad spectral coverage (20-50 kHz)
- Compressed air supply for active designs
- Blade-relative air flow for passive operation

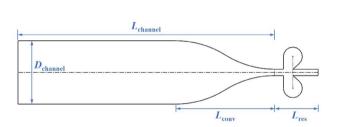

Dog whistle

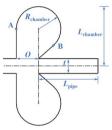
4

Active whistles

Aerodynamic whistle for ultrasound generation

3D-printed whistle

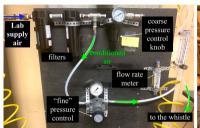

- Follows initial design of Beeken¹
- ullet Dominant tone at \sim 23 kHz + harmonics; frequency insensitive to p_t
- \bullet Working principle: Class III whistle with resonance amplification 2



¹Fluid ultrasonic generator (US3432804A). (1969, March 11).

²Chanaud, R. C. (1970). Aerodynamic whistles. Scientific American, 222(1), 40-47.

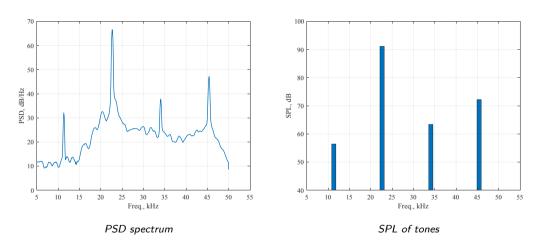
Whistle design parameters³


$L_{ m channel}$	$L_{ m conv}$	$L_{ m res}$	$L_{ m chamber}$	$L_{ m pipe}$	t	0	$R_{ m chamber}$	$D_{ m channel}$
65	25	11	6.4	6.4	1.6	2.4	2.4	20

³Zeng, Z., & Sharma, A. (2023).Aerodynamic-whistles-based ultrasonic tone generators for bat deterrence. *Physics of Fluids*, 35(9).

Active whistles: Experiments

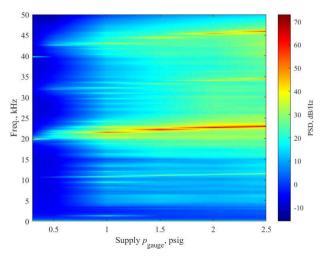
Experiment setup



Experiment setup

- \bullet Lab air \to filters \to pressure \to flow measurement \to whistle
- ullet Flow $M\ll 1 o$ gauge pressure $\sim p_t$
- Farfield sound measurements on a circular arc
- B&K 4939 mic + signal conditioning (B&K 2690) 20 Hz < f < 50 kHz

Measurement results



Typical far-field sound spectrum of the baseline whistle, at supply pressure, $p_t = 2.0$ psig.

9

Radiated ultrasound: "spectrogram"

PSD spectra variation with supply air pressure (p_t)

Active whistles: Simulations

Governing equations

Flow equations

$$\begin{split} \frac{\partial \bar{\rho}}{\partial t} + \frac{\partial}{\partial x_j} (\bar{\rho} \tilde{u}_j) &= 0 \\ \frac{\partial}{\partial t} (\bar{\rho} \tilde{u}_i) + \frac{\partial}{\partial x_i} (\bar{\rho} \tilde{u}_i \tilde{u}_j) &= -\frac{\partial \bar{p}}{\partial x_i} + \frac{\partial}{\partial x_j} (\bar{\tau}_{ij} - \overline{\rho u_i'' u_j''}) \end{split}$$

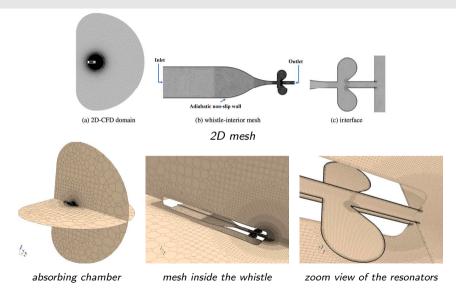
Acoustic equations

$$\left(\frac{\partial^{2}}{\partial t^{2}} - c_{o}^{2} \frac{\partial^{2}}{\partial x_{i} \partial x_{i}}\right) (H(f)\rho') = \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} (T_{ij}H(f)) - \frac{\partial}{\partial x_{i}} (F_{i}\delta(f)) + \frac{\partial}{\partial t} (Q\delta(f))$$

$$T_{ij} = \rho u_{i}u_{j} + P_{ij} - c_{o}^{2}\rho'\delta_{ij},$$

$$F_{i} = (P_{ij} + \rho u_{i}(u_{j} - v_{j}))\partial f/\partial x_{j},$$

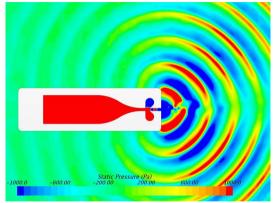
$$Q = (\rho_{o}v_{i} + \rho(u_{i} - v_{i}))\partial f/\partial x_{j}.$$

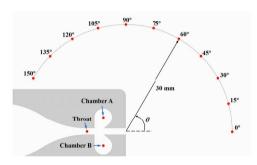

Numerical approach

- Compressible uRANS + low-speed preconditioning
- Time discretization: 2nd-order implicit dual-time stepping
- Spatial discretization: 2nd-order MUSCL-based Roe
- Turbulence: k-ω SST
 Boundary conditions:
 - Inlet: total conditions (p_t, T_t)
 - Outlet: static p_{∞}
 - Wall: no-slip, adiabatic
- Acoustics solver: time-domain, Farassat-1A formulation⁴

STATE

⁴Farassat, F. (2007). Derivation of formulations 1 and 1a of farassat (tech. rep. No. NASA/TM-2007-214853). NASA Langley Research Center.

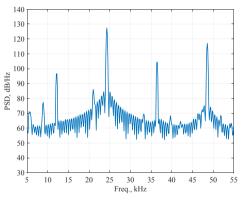

Computational mesh



3D mesh

Numerical results

instantaneous pressure contours

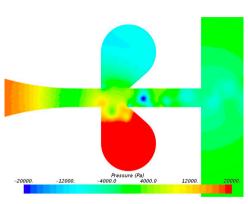


probe locations

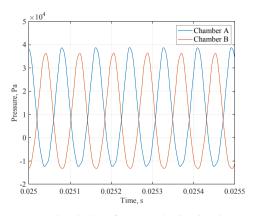
Strong tonal ultrasound radiation

Numerical results

105° 90° 75°
120° 60°
135° 45°
150° 80 85 90 95 100105 110 115 120 125 130
Peak PSD, dB/Hz

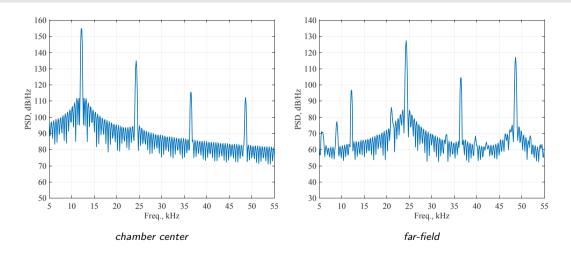

PSD of radiated sound at 30° polar angle

directivity of radiated sound


 $f_{
m peak,farfield} \sim$ 24 kHz + harmonics; radiation downstream dominated

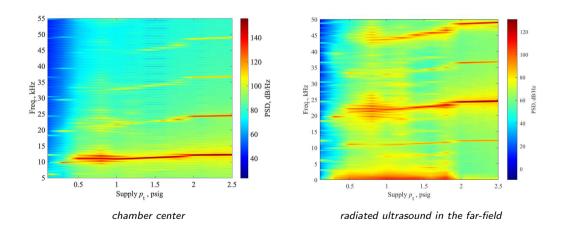
Out-of-phase chambers

pressure field in the resonators

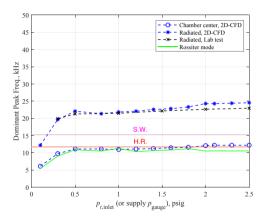


temporal variation of pressure in the chambers

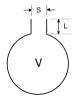
Phase cancellation ightarrow radiation at $2 imes f_{
m peak, chamber}$


Pressure spectra

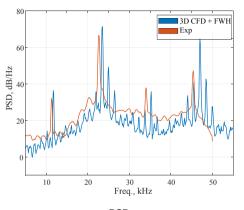
Imperfect phase cancellation \rightarrow small peaks at subharmonics


PSD variation with p_t

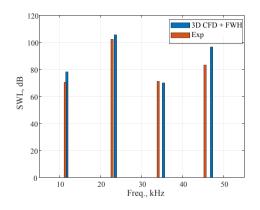
Radiation over a large range of p_t



Ultrasound generation mechanism

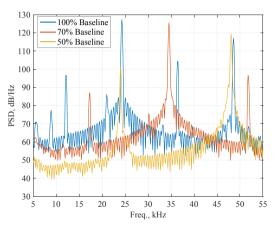

 f_{peak} vs. p_t and theoretical estimates

- Rossiter & Helmholtz resonance freqs. coincide
- Sound generation mechanism(s):
 - 1. Helmholtz resonance
 - 2. Rossiter modes



Verification

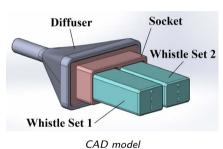
pressure PSD spectra


radiated acoustic power PSD

Good agreement⁵: PSD spectra and radiated power

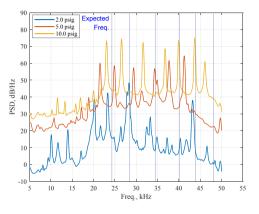
⁵Zeng, Z., & Sharma, A. (2023).Aerodynamic-whistles-based ultrasonic tone generators for bat deterrence. *Physics of Fluids*, 35(9).

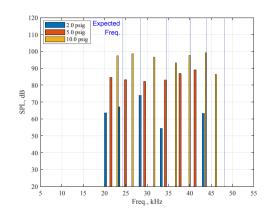
Spectral coverage


Geometrically scale whistles ightarrow change f_{peak}

 $\mathsf{multiple}\ \mathsf{whistles} \to \mathsf{broad}\ \mathsf{spectral}\ \mathsf{coverage}$

Six-whistle deterrent



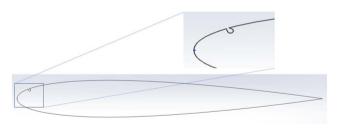

. Oz piintea opeeiinei

A six-whistle active ultrasonic deterrent

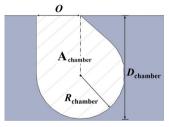
Six-whistle deterrent measurements

PSD spectra SPL spectra

Good spectral coverage obtained using multiple whistles

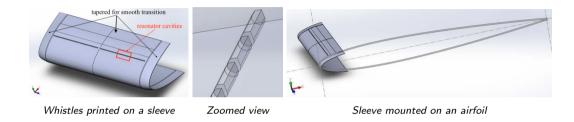


Passive whistles


Passive whistle design

Concept

Use blade-relative flow to excite cavity resonance


Passive whistle

Design parameters

CAD model

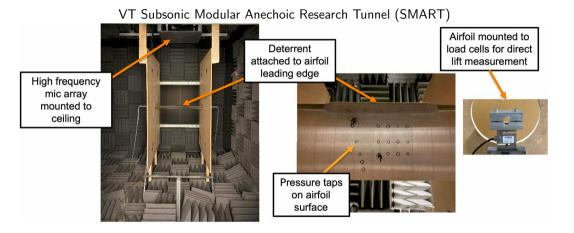
Computer model of the passive deterrent design

- "Sleeve" design for wind tunnel safety
- Test different deterrents on same baseline airfoil model
- ullet 3D printing o inexpensive

Passive whistles: Experiments

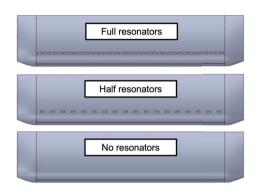
Deterrent model

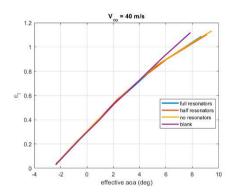
Rapid prototyping


- 3D-printed resin
- Several resonators closely spaced
- $\bullet \ \, \mathsf{Printer} \,\, \mathsf{constraints} \, \to \, \mathsf{multiple} \,\, \mathsf{parts}$
- End parts (3&4) tapered for aero

Two deterrents

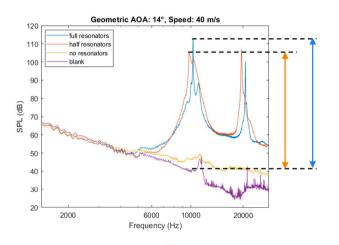
- 1. Low-freq (LF): $f_{\rm peak} \sim$ 12 kHz
- 2. High-freq (HF): $f_{\rm peak} \sim$ 24 kHz


Virginia Tech SMART facility



- Measure aero performance & acoustics
- Low max speed → LF deterrent only
- Explore bigger design space

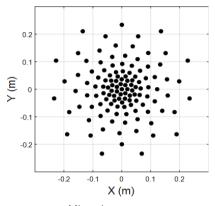
Aero impact



 C_I impacted by the sleeve, not by the resonators

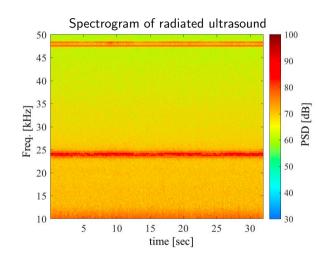
Acoustics

- Only the LF deterrent tested
- Both "full" and "half" resonator configurations produce significant tonal sounds


Robust and loud tonal acoustic radiation

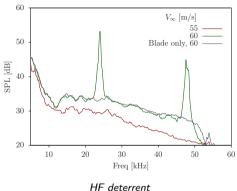
Virginia Tech Stability Wind Tunnel

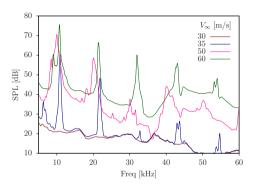
Stability Wind Tunnel



Microphone array

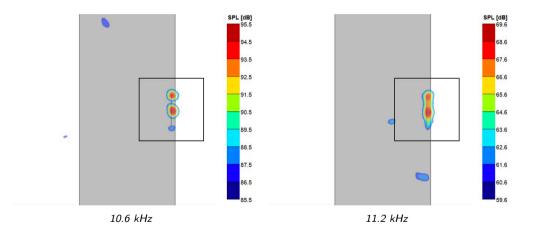
- Acoustic measurements only
- 65m/s max speed \rightarrow HF & LF deterrents
- Phased-array for acoustic source diagnostics


Measured spectrograms



- Steady radiation
- $f_{
 m peak} \sim$ 24 kHz; harmonic \sim 48 kHz
- No subharmonics
- Operating conditions:
 - $\circ~V_{\infty}=60~\text{m/s}$
 - $\circ \ \alpha = 0^{\circ}$

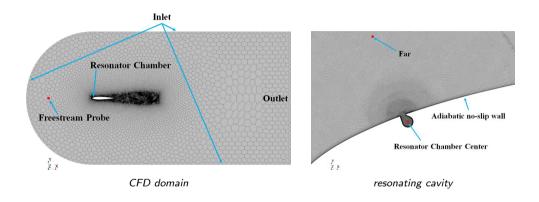
Variation with speed



LF deterrent

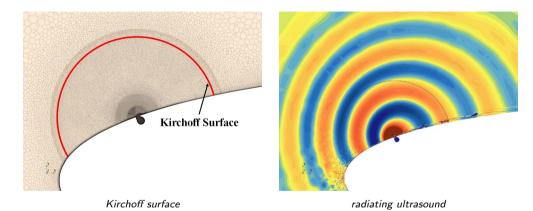
- $V_{\infty} = 30, 35, 50, 55, 60 \text{ m/s}$
- Baseline blade (no deterrent) → no ultrasonic tones
- HF deterrent *cut-on* for $V_{\infty} \ge 60$ m/s; LF cut-on for $V_{\infty} \ge 35$ m/s

Source diagnostics: acoustic beamforming

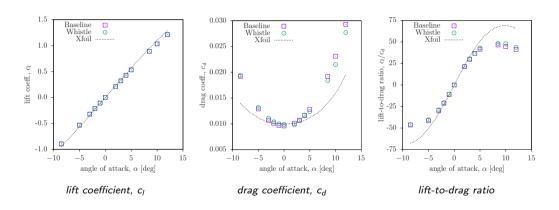


- $V_{\infty}=60$ m/s and $\alpha=0^{\circ}$
- Acoustic hotspots over deterrents

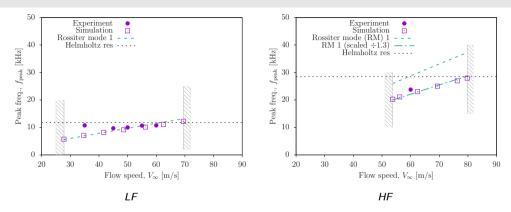
Passive whistles: Simulations


Computational mesh

- Mesh designed to capture flow around the resonator
- \bullet Farfield mesh coarse \to dissipate acoustic wave \dots reduce reflections
- Use FW-H to predict farfield ultrasound

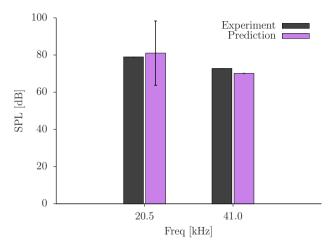

Ultrasound radiation (visualization)

- Integration (Kirchoff) surface for noise prediction
- Radiated ultrasound field


Aerodynamic impact assessment (simulations)

Negligible adverse impact if deterrents "embedded" in blades

Mechanism of ultrasound generation

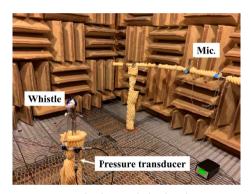


- ullet Variation of $f_{
 m peak}$ with V_{∞} for the LF and HF deterrents
- Predictions align with theoretical Rossiter modes

Ultrasound generation due to Rossiter modes

Verification⁶

- SPLs 1 m away from source
- Fundamental (20.5 kHz) and the second harmonic (41 kHz)
- Predictions corrected for atmospheric absorption


Tone SPLs

⁶Zeng, Z., Huang, S.-F., Alexander, W. N., & Sharma, A. (2025).A passive, blade-mounted ultrasonic bat deterrent for wind turbines. Applied Acoustics, 229, 110392.

Signal modulation

Deterrence signal modulation⁷

setup in the anechoic chamber

equipment to modulate supply pressure

- Supply air pressure modulated periodically
- Supply pressure & flow rate monitored

⁷Zeng, Z., & Sharma, A. (2025).Frequency modulation of an aerodynamic whistle-based bat deterrent. Applied Acoustics, 228, 110276.

Modulation results: experiments

- $f_m = 50$ Hz, $p_m = 1.0$ psi, sine-wave modulation
- ullet Frequency modulation possible; larger Δf desirable

Simple approach to modulate deterrence signal

Conclusions & future work

Conclusions

- Demonstrated ultrasonic tone generation via aerodynamic whistles
- Methods:
 - Simulations: CFD (uRANS) + acoustic analogy (FW-H)
 - Experiments: ISU anechoic chamber, VPI tunnels: Stability & SMART
- Developed active & passive ultrasonic deterrents
- Active designs:
 - Nacelle/tower mounted w/ compressed air supply
 - \circ Demonstrated ultrasound generation over a range of p_t
 - Sound generation mechanism: Helmholtz resonance
 - o Spectral coverage: geom. scale & combine whistles
 - o Demonstrated signal modulation ... reduce habituation
- Passive designs:
 - Blade mounted
 - o Sound generation mechanism: Rossiter modes
 - Work for $V > V_{\text{cut-off}}$
 - Verified simulation methodology

Future work

- Deterrent optimization for maximum intensity ultrasound radiation
- Laboratory (Stability wind tunnel) testing (planned):
 - Aero impact with the HF deterrent
 - Understand coupling between resonators
 - Sound source diagnostics
- Full-scale testing (planned):
 - SAFL UMN 2.5 MW full-scale wind turbine
 - Measure SCADA data + ultrasound generation
- Impact on bats (not yet planned)
 - Controlled lab tests
 - Field tests

Publications

Journal

- 1. Zeng, Z., & Sharma, A. (2025). Frequency modulation of an aerodynamic whistle-based bat deterrent. *Applied Acoustics*, 228, 110276
- 2. Zeng, Z., Huang, S.-F., Alexander, W. N., & Sharma, A. (2025). A passive, blade-mounted ultrasonic bat deterrent for wind turbines. *Applied Acoustics*, *229*, 110392
- 3. Zeng, Z., & Sharma, A. (2023). Aerodynamic-whistles-based ultrasonic tone generators for bat deterrence. *Physics of Fluids*, *35*(9)

Conference

- Zeng, Z., Sharma, A., S-F., H., & Alexander, W. N. (2022). Passive operation of a blade-mounted, ultrasonic bat deterrent using an exhaust diffuser. 28th AIAA/CEAS Aeroacoustics 2022 Conference, 3101
- 2. Zeng, Z., & Sharma, A. (2021). Experimental and numerical aeroacoustic analysis of an ultrasound whistle. *AIAA Aviation Forum*

Acknowledgements

- DOE EERE grants: DE-EE0008731 and DE-EE0011086
- DOE team: Joy Page, Cris Hein, Raphael Tisch, Martha Amador, Jason Price
- Enel Green Power

Thank You!

Questions?

Anupam Sharma | sharma@iastate.edu www.aere.iastate.edu/sharma