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I. Introduction

Shock waves are mathematical singularities in a continuum description of supersonic flow that cause abrupt jumps in

pressure, temperature, and density. Shock waves significantly impact flight vehicle performance, stability, and structural

integrity through phenomena such as shock-boundary layer interaction and shock-induced stall/flutter. Their influence on

aerodynamic forces, drag, and heat transfer underscores the need for accurate shock detection in numerical simulations

and physical experiments.

In computational fluid dynamics (CFD), shocks are treated in one of two ways: a) shock fitting, where the

computational mesh is aligned with the shock line/surface (requiring a priori knowledge of shock locations) and

Rankine-Hugoniot jump conditions are applied across the shocks, or b) shock capturing, where the shocks are computed

as a part of the simulation procedure. While shock-capturing methods do not require a priori shock information, regions,

where such discontinuities exist, require special treatment to avoid producing unphysical solutions (Gibbs phenomena).

In high-order (≥ second) numerical schemes, shocks are treated by effectively reducing the order of accuracy of the

scheme at the discontinuity, achieved by limiting the fluxes or adding numerical diffusion. High-resolution schemes for

compressible flow simulations where such discontinuities are present require some means of identifying and treating

non-smoothness in the solution.

Hybrid schemes built on compact finite differencing switch to shock capturing schemes, such as weighted-essentially

non-oscillatory (WENO), Roe scheme, etc., in regions where discontinuities in the flow variables are identified.

Examples of such schemes are the hybrid compact-WENO scheme by Pirozzoli [1], and the hybrid compact-Roe

scheme explored by Visbal and Gaitonde [2]. Identification of shocks is critical for such hybrid schemes to avoid Gibbs

phenomenon.

Shock detectors/sensors are numerical algorithms for identifying shock waves in fluid flows. Wu et al. [3] provides

an overview of commonly used shock sensors. Traditional shock sensors, such as [4, 5], rely on first- and/or second-order

derivatives of the flow variables to evaluate smoothness. Hill and Pullin [6] proposed using WENO (Weighted Essentially

Non-Oscillatory) weights to assess stencil regularity; the ratio between the largest and smallest WENO weights provides

a measure of smoothness. Visbal and Gaitonde [2] used a WENO-type smoothness criterion for shock detection. Such

gradient/smoothness-based detectors can effectively detect discontinuities but misidentify high-wavenumber waves as
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shocks. Physics-based sensors are also widely used as shock detectors. A prominent example is the Ducros sensor [7],

which uses the relative importance of dilatation to vorticity to differentiate between shock and turbulent regions. Another

example is the Kanamori-Suzuki sensor [8], which uses the convergence of characteristics for shock identification.

Other methods include multi-resolution wavelet sensors [9], wave-normal Mach number calculations accounting for

moving shocks [10], solving shock function transport equations [11], and modal smoothness [12].

Recent developments include the use of edge-detection techniques for shock detection [13]; such techniques, for

example the Canny algorithm [14], have traditionally been used for image processing. Fujimoto et al. [15] explored

modifications to the Canny algorithm to detect shocks by accounting for the Rankine-Hugoniot jump conditions. Neural

networks have also been explored for shock detection. Ray and Hesthaven [16] used a multilayer perceptron (an artificial

neural network or ANN), trained offline using supervised learning, as a blackbox to identify “troubled” cells. Morgan

et al. [17] trained and used an ANN to identify shock regions and demonstrated it for multidimensional shock problems.

Liu et al. [18] proposed a convolutional neural network (CNN) utilizing a novel loss function to provide potential

speedup or accuracy over conventional detectors while maintaining problem generalization. Beck et al. [19] also

implemented CNNs to achieve parameter-free detection without requiring any tuning by the user.

While prior work on shock detectors has focused primarily on improving precision, there is little-to-no work on

reducing the computational cost associated with shock detection. We propose a framework that uses multiple grid levels,

evaluating the shock sensor progressively from coarse to fine grids, but only in regions identified as shock-positive

in the previous (coarser) grid level. We refer to this as a multilevel shock-detection framework. Oliveira et al. [20]

also uses a combination of fine and coarse meshes, but for the purpose of accurate shock detection, not acceleration.

Their method is referred to in the literature as multilevel shock detection, but their approach and purpose differ. We

demonstrate the accuracy and speedup of our multilevel framework with three commonly used shock detectors on

two- and three-dimensional problems. We assert, however, that the framework is general and can be used with any

mesh-based shock-detection approach.

The remainder of this paper is structured as follows. Section II describes the methodology behind the multilevel

framework and the shock detection algorithms evaluated in this work. Numerical experiments evaluating the speedup

and accuracy of the proposed multilevel framework are presented in section III, and the key findings are summarized in

section IV.

II. Methodology

The premise of the framework is that flow discontinuities, such as shocks, can be detected using a mesh significantly

coarser than required for solving the governing fluid flow equations. Since such discontinuities typically occupy a very

small fraction of the computational domain, large portions of the computational domain can be rapidly determined to

be free of shocks by evaluating the shock sensor over a much coarser mesh. We can save computational time without
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1. Ducros Sensor

The Ducros shock sensor enhances the Jameson sensor [5] by multiplying it with a factor (Ducros value) that

distinguishes shocks from compressible turbulence through a relative comparison of dilatation and vorticity magnitude

(eq. (1)). The divergence and curl operators in eq. (1) use the dimensionality of the problem, i.e, ∇ · u is evaluated as

(mGD + mHE) in 2D and (mGD + mHE + mIF) in 3D problems. The Ducros value in each cell is multiplied with the Jameson

sensor evaluated along each coordinate; eq. (1) shows the expression for evaluation along the index 8.
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exceeds a predetermined problem-dependent threshold. Consideration is given to two different versions of the Ducros

sensor. In the first variant, we compute the Ducros value (involving the expressions ∇ · u and ∇ × u) as part of the

shock-detection algorithm at each grid level. In contrast, in the second, we compute these only on the finest grid outside

the shock-detection algorithm, i.e., the time to evaluate these quantities is not included in the computation time for

shock detection. The second variant mimics the scenario where these values are precomputed elsewhere in the program

(for solving the conservation laws, for example). We refer to the first variant as Ducros-I and the second as Ducros-O.

2. Convolution-based Sensor

Convolutions are used in image processing for edge detection by identifying discontinuities in pixel brightness. The

procedure entails convolving a filter, typically a combination of gradient and smoothing operators, with a matrix of

brightness values corresponding to the image pixels. An example is the Sobel filter [22], which uses two 3 × 3 kernels

"- and ". to approximate the first derivatives along the horizontal (G) and vertical (H) directions, respectively. These

kernels can be decomposed as the products of an averaging kernel and a differentiation kernel, as shown below.
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Shocks, associated with discontinuities in pressure, can be treated as edges appearing in a flow and thus can be

detected by convolving pressure values with the Sobel kernels. At each mesh point, given by a pair of (8, 9) indices, we

define a 3 × 3 matrix %8 9 as
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where ?8, 9 is the static pressure in cell (8, 9). We evaluate the convolutions -8 9 = "- ∗ %8 9 and .8 9 = ". ∗ %8 9 to

estimate horizontal and vertical pressure gradients respectively; note that -8 9 and .8 9 are 3 × 3 matrices for each (8, 9)

pair. The overall pressure gradient magnitude is estimated by combining the Frobenius norms of -8 9 and .8 9 .
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Cell (8, 9) is flagged to contain a shock if Φ
(C)
8 9

exceeds a predetermined threshold, which is problem-dependent and

requires tuning.

S8 9 =

{
1, for Φ

(C)
8 9

> threshold

0, otherwise
∀ 8 = 1, 2, . . . , " 9 = 1, 2, . . . , # (5)

In convolutions, stride refers to the shift across cells of the filter (e.g., "-, ". ) when performing a convolution.

For example, with a 3 × 3 filter, a stride of one implies a one-cell shift for successive convolutions, resulting in an

overlap between convolution areas; a stride of three eliminates this overlap. Dilation refers to the expansion of the filter.

Figure 4a illustrates stride and dilation for a 3 × 3 filter. The blue colored cells in fig. 4a show the filter and the green

colored cells show the shifted (by stride) filter; the numbers in brackets represent [stride,dilation] values. Convolutions

at different grid levels can be performed by simultaneously adjusting both the stride and dilation values, ensuring they

remain equal; see subpanels labeled [1, 1], [2, 2], and [3, 3] in fig. 4a. Figure 4b shows the stride and dilation values

used for convolution-based multilevel shock detection for different grid coarseness. As an example, shock detection

using four grid levels would use stride (=dilation) values of 8, 4, 2, 1 on meshes with cell sizes 8ℎ, 4ℎ, 2ℎ, and ℎ,

respectively.

Extension to 3D Two distinct approaches are used to extend the convolution-based sensor to 3D. The first approach

treats the entire 3D flow field as a series of 2D slices. The 2D convolution-based multilevel shock detection algorithm

described above is applied to each 2D slice individually. For instance, in the I-direction, G-H slices (I = constant planes)

are evaluated. This is repeated for the G and H directions (see fig. 5) for each multilevel step. For curvilinear grids where

the physical coordinates (G, H, I) correspond to the computational coordinates (b, [, Z), the same approach would use

constant b, [, and Z planes. If a shock is detected in any of the three planes passing through a grid point, the point is

marked shock-positive.

The second approach uses 3D Sobel filters for shock detection. These filters are third-order tensors of dimension
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