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Nontrivial nanostructure, stress relaxation
mechanisms, and crystallography for
pressure-induced Si-I→ Si-II phase transformation
Hao Chen1, Valery I. Levitas 2,3✉, Dmitry Popov4✉ & Nenad Velisavljevic4,5

Crystallographic theory based on energy minimization suggests austenite-twinned martensite

interfaces with specific orientation, which are confirmed experimentally for various materials.

Pressure-induced phase transformation (PT) from semiconducting Si-I to metallic Si-II, due to

very large and anisotropic transformation strain, may challenge this theory. Here, unexpected

nanostructure evolution during Si-I→ Si-II PT is revealed by combining molecular dynamics

(MD), crystallographic theory, generalized for strained crystals, and in situ real-time Laue

X-ray diffraction (XRD). Twinned Si-II, consisting of two martensitic variants, and unexpected

nanobands, consisting of alternating strongly deformed and rotated residual Si-I and third

variant of Si-II, form f111g interface with Si-I and produce almost self-accommodated

nanostructure despite the large transformation volumetric strain of �0:237. The interfacial

bands arrest the f111g interfaces, leading to repeating nucleation-growth-arrest process and

to growth by propagating f110g interface, which (as well as f111g interface) do not appear in

traditional crystallographic theory.
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One of the challenging goals in studying high-pressure PTs
in materials is finding real time microstructure evolution.
This includes crystallographic features of PT, orientation

of interfaces, morphology of phases, and stress relaxation
mechanisms. Crystallographic theory based on energy
minimization1,2 suggests austenite-twinned martensite interfaces
with specific orientation, which are confirmed experimentally for
various materials. For phases that do not exist in the stress-free
state, including Si-II, in situ measurements are vital and essential
in studying high-pressure PTs. High pressure Laue diffraction is a
powerful tool to investigate microstructure evolution across PT
in situ3–5, however, a broader application of this powerful
experimental capability also requires a strong collaboration with
modeling and theory work. Martensitic PT from Si-I to Si-II
occurring at 12–14 GPa is studied broadly3,5–10. Si-I/Si-II inter-
face is observed but not uniquely indexed with Laue diffraction,
and twining in Si-II is mentioned hypothetically by Popov et al.5.
However, MD simulations11–13 do not show twinned Si-II. MD
simulations reveal atomic features of PT at nm-ps resolution.
However, due to limitations of small process duration (ns),
sample size (μm), and high strain rate (ps−1), MD stress relaxa-
tion mechanisms and nanostructure may deviate from reality.
XRD, due to spatial resolution of few micrometers and time
resolution of few minutes may miss some finer features and
transitional processes. Also, it does not allow unambiguous
indexing of interfaces without some assumptions. Here, we show
major agreement between these two approaches for the revealed
counterintuitive nanostructure, which is very nontrivial and
strongly supports both.

Crystallographic theory1,2 for cubic-tetragonal PT suggests that
there are three tetragonal martensitic variants of Si-II with
transformational deformation gradients (i.e., for neglected elastic
strains) in cubic coordinates F1t ¼ fa; a; bg, F2t ¼ fa; b; ag,
F3t ¼ fb; a; ag, where a ¼ 1:175 and b ¼ 0:55311, i.e., transfor-
mation strains (a� 1 and b� 1) are large, including large
transformation volumetric strain ϵv ¼ detFt � 1 ¼ �0:237. Each
pair of Si-II variants are in twin relation with each other with a
f110g twinning plane of Si-I lattice and very large twinning shear
γ ¼ 1:6551. Si-I and the mixture of two twin-related Si-II mar-
tensitic variants are compatible (i.e., satisfies the Hadamard
compatibility condition that follows from the displacement con-
tinuity across a coherent interface) for an interface with unit
normal m ¼ ½0:631; 0:754; 0:183�. Also, complete self-
accommodating mixture of martensitic variants (i.e., mixture
that occupies region of the same size and shape as the parent
phase) within austenitic matrix (e.g., in diamond-shape region),

which does not generate any long-range stresses, requires zero
volumetric strain1, i.e., it is impossible for Si-II.

In this work, we hypothesize that large strains may lead to
microstructure and stress relaxation mechanisms, that do not
follow traditional crystallographic theories. Each experimental
and simulation method has its own pros and cons and cannot
give a complete picture. We combine crystallographic theory
(which we expand to the deformed crystals and complex
nanostructures), MD, and in situ synchrotron radiation diffrac-
tion, and reveal unexpected nanostructure evolution during Si-I
to Si-II PT, which contradicts the classical crystallographic the-
ory. All three approaches revealed twinned Si-II with the same
twinning planes f110g. Twinned Si-II, consisting of two mar-
tensitic variants, and unexpected nanobands, consisting of alter-
nating strongly deformed and rotated residual Si-I and the third
variant of Si-II, form f111g interface with Si-I and produce almost
self-accommodated nanostructure despite the large transforma-
tion volumetric strain. The interfacial bands arrest the f111g
interfaces, leading to repeating nucleation-growth-arrest process
and to growth by propagating f110g interface, which (as well as
f111g interface) do not appear in traditional crystallographic
theory. Thus, in contrast to classical theory requiring stress-free
interfaces, microstructure is governed by reduction of the long-
range stresses in the entire volume, tolerating high short-range
stresses at complex interfaces, which are necessary to keep resi-
dual Si-I and reduce resultant volume jump.

Results
Computational scheme for MD simulations is presented in Fig. 1
and supplementary material. Si-I sample includes two disloca-
tions, which cause stress concentration (Fig. 1), and is loaded by
hydrostatic pressure. In the theory14, single-variant martensite
nucleates first and, after reaching some critical size, is then
observed to twin. Here, twinned Si-II appears from the beginning
(Fig. 1 and Supplementary Movie 6) near each dislocation. In
XRD experiment twinning in Si-II is observed from small angles
between <211> and <220> directions (Fig. 2 and Supplementary
Movie 5), consistent with angle up to 8:3� obtained here with the
crystallographic theory under strains. In MD simulations with a
dislocation dipole (practically two independent single disloca-
tions), pressure for initiation of Si-I→ Si-II PT is lower than for
dislocation-free crystal by a factor of 1:45. In reality, the defect-
free Si-I should transform to Si-II at 18.3 GPa, when the first
phonon instability in the first principle calculations is observed9.
Then the observed PT pressure in the current experiment,
~13 GPa (see Supplementary Material), which matches the

((a) 
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0.3

(b) von-Mises Strain

(c) 

Fig. 1 Field of internal stresses due to dislocations and nucleation of twinned Si-II at two dislocations. a Computational model of a single Si crystal with
shuffle 60° dislocation dipole inserted by employing dislocation displacement27 at constant hydrostatic pressure, including internal stress distribution due
to dislocations. Stress fields of dislocations practically do not overlap. b Evolution of von-Mises strain distribution. c Distribution of all internal stresses due
to dislocation from MD simulation. The twined Si-II nucleates from single dislocation from the beginning and grows along the ½110� (i.e., y) direction. The
ð110Þ twinning plane is consistent with the prediction from crystallographic theory1 and the current experiment.
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typically reported pressures3,5–10, is lower than 18.3 GPa by a
factor of 1.41. Thus, a typical nucleation event in the experiment
should occur at a single dislocation, consistent with low dis-
location density in our Si-I sample. This contrasts with the
statement in9 that due to the large difference between calculated
PT pressure 18.3 and 13 GPa in the experiment, phonon
instability cannot be responsible for the initiation of PT; clearly,
the effect of dislocations was missed. Another qualitative con-
firmation of the strong effect of defects on nucleation pressure in
our experiments comes from the fact that there are irregular parts
of a sample where nucleation did not occur at all because they are
probably dislocation-free (see Supplementary Information).

After nucleation, nontrivial microstructure evolution is
observed, as shown in Fig. 3 and Supplementary Movie 6. Both in
MD and experiment (see below) Si-I and complex Si-II micro-
structure form a rational interface f111g; which smallest deviation
from predicted by crystallographic theory normal m is 25.16°. In
elasticity-based theory of martensite15–17, a thin layer of alter-
nating tips of twin-related F1t and F2t variants produce significant
elastic energy. Due to very large twinning shear of 1:655 for Si-II
as well as significant deviation of f111g interface from m, the
elastic energy relaxes by producing an unexpected interfacial
nanoband II, consisting of alternating F3t variant of Si-II and
strongly deformed and rotated residual Si-I (Fig. 3). Such an
interfacial band was not observed for any PT in any material and
represents nontrivial structural mechanism of internal stress
relaxation. These interfacial bands II strongly reduce mobility of
the twinned Si-II–Si-I interfaces f111g; which practically do not
propagate. Microstructure evolves in two main ways (Fig. 3 and
Supplementary Movie 6). (a) Lengthening of twinned Si-II and

interfacial bands along the bands in ½11�2� direction. During this
process, the bands form an interface between Si-I and Si-II close
to ð110Þ twin interface, which does not appear in crystallographic
theory but is observed in our Laue diffraction experiment (see
below). (b) New twinned Si-II nucleates and grows from an
interfacial band II, producing next band I and then II. At the
same time, previously formed bands I and II keep growing
causing movement of (110) interface between Si-I and Si-II.

Using real-time Laue diffraction, we explicitly observed pro-
pagation of Si-I/Si-II interfaces, as projected onto a f110g plane
(Fig. 4a, b and supplementary movies 1, 2, and Supplementary
Information). The observed interfaces are parallel to ½101� and
½010� directions and, at the same time, the interfaces are tilted by
large angles with respect to the plane of projection ð10�1Þ. It is
important to stress that normal to the interface parallel to [101] is
oriented far away from the normal m = [0.631;0.754; 0.183]
predicted by crystallographic theory. The area of the newly
formed Si-II overlaps with the area of the rest of Si-I indicating
that at least one of these interfaces is tilted by angle of about 45�

with respect to the plane of projection. Thus, possible orientations
of Si-I/Si-II interfaces include f111g and f110g interfaces pre-
dicted by the MD simulations but do not exclude other directions.
The Si-I/Si-II interface in projection on a f100g plane was
observed in in situ Laue diffraction experiment5, but it was not
uniquely indexed and, apart from the current results, it was not
clear whether Si-II areas grow. Thus, Si-II areas, as projected onto
a f100g plane, are elongated parallel to a <110> direction indi-
cating limited range of crystallographic planes, tilted by large
angles with respect to the plane of projection and parallel to this
<110> direction. Therefore, possible orientations of Si-I/Si-II
interfaces also include f111g and f110g interfaces predicted by the
MD simulations but also still do not exclude other directions.
Results5 did not reliably exclude interface with normal m ¼
½0:631; 0:754; 0:183� predicted by crystallographic theory, in
contrast to the current results. Si-II produces much broader and
“streaky” reflections comparing to the parental phase. This is the
indication of substantial misorientation of various nanodomains
in Si-II, to some extent like those observed in Fig. 3. Since in5 and
here the same Si-I/Si-II interfaces are observed as projected onto
different crystallographic planes, combining results can yield 3D
orientations of the interfaces based solely on the experimental
results under the following assumption. Since only interfaces
parallel to rational axes with indices 0 or 1 have been observed, it
is reasonable to suppose that the interfaces are parallel to rational
crystallographic planes with the same kind of indices. This yields
interfaces parallel to f110g and f111g predicted by the MD. As
predicted, twinned Si-II and interfacial bands grow along the
bands in ½12�1� direction causing shift of the Si-I/Si-II interfaces
parallel to ð101Þ and ð1�1�1Þ (Fig. 4c). While interfacial nanobands
so far have not been confirmed in experiment due to very small
size and severe distortions from cubic Si-I and tetragonal Si-II
lattices, experimental confirmation of unexpected f111g and
f110g interfaces, which are directly related to them, makes this
unexpected evolving nanostructure plausible.

Discussion
To better understand the reasons for the unusual f111g interface,
new interfacial bands, presence of residual Si-I deeply in the
region of stability of Si-II, and two-band structures with specific
spacing, we expanded traditional stress-free crystallographic
theory for finite elastic strains (stresses) and evaluated degree of
violation of the averaged Hadamard compatibility condition for
each of the interface. As a measure of violation, we evaluate the
principal components of 2D incompatibility strain tensor Inc
(defined in Supplementary Material) that deform f111g interfaces
between different phases or bands. For compatible interface

321
211

220

101

200

Fig. 2 Oscillation diffraction pattern from Si-II obtained with
monochromatic beam in 1° angular range. Red circles denote predicted
diffraction lines of Si-II.
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Inc ¼ ð0; 0Þ. Thus, for the band I-Si-I interface,
Inc ¼ ð0:069; 0:087Þ, i.e., corresponding strains are finite (i.e., on
the order of 0:1), which along with local stresses due to alter-
nating twin tips cause nucleation of the band II. For the band II-
Si-I interface, Inc ¼ ð0:117; 0:258Þ, which causes much higher
local stresses. For the band I-band II interface,
Inc ¼ ð0:326; 0:201Þ, which leads to huge local stresses. Thus,
incompatibility analysis only increased perplexity: why does the
system choose such sophisticated highly energetic nanostructure?
However, these interfacial stresses are short-range and partially
relaxed by local atomic rearrangements and loss of coherence

(Fig. 3b). Most importantly, (a) averaged over the bands I and II
deformation gradient (Fav ¼ λiFi with volume fractions
λ1 ¼ λ2 ¼ 0:3742; λ3 ¼ 0:1740; λ4 ¼ 0:1126) produces with Si-I
very small incompatibility Inc ¼ ð0:004; 0:021Þ; (b) normal to
the f111g interface strain Fav � F0 is also small ð�0:032Þ; (c)
difference in volumetric deformation gradients detFav ¼ 0:718
and detF0 ¼ 0:763 is �0:045, i.e., small (in comparison with
ϵv ¼ 0:237) as well. All these facts produce almost self-
accommodated bands I+ II nanostructure with small averaged
strain within Si-I matrix, and consequently, small long-range
internal stresses. The known self-accommodated diamond

(a) 10 ps (b) 20 ps (c) 30 ps (d) 40 ps

von-Mises 
strain

0 0.3

10 nm

[ ]

(e) (f)

von-Mises 
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Band II

Band I

Band II

Fig. 3 Snapshot of Si-II microstructure and its rotated and enlarged views. a–d The evolution of the microstructure growing from two dislocation-induced
nuclei. e and f The zoomed microstructures composed of the band I, consisting of alternating Si-II variants with deformation gradients F1 and F2 (which
include elastic strains), separated by ð110Þ twinning plane, and interfacial band II, consisting of alternating Si-II variant F3 and strongly deformed Si-I with
deformation gradient F4. The interfaces between the two bands and between Si-I and band II are ð111Þ planes. Another interface between twinned Si-II and
Si-I is ð110Þ; both are not present in the crystallographic theory1. Growth occurs by propagation of ð110Þ interface along the bands in ½11�2� direction and by
nucleation and growth of new twinned Si-II from an interfacial band II, producing next band I and then band II, as observed in the experimental
measurement.

_
(101)

(101)

(c)

(b)(a)

[101]

[010]

[101]

[010]

[101]

[010]

[101]

[010]

1μm

1μm1μm

1μm

0 - 1.5 min.

0 - 1.5 min.

0 - 1.5 min.

0 - 1.5 min.

Fig. 4 Shifts of Si-I/Si-II interfaces as observed by in situ real-time Laue diffraction and MD simulation. aMaps of 202 reflection from a Si-I crystal (left
column) and maps of a diffuse reflection from Si-II (right column). More maps are available in the Supplementary Movie 1. b 3D schematic of the shifts of
the Si-I/Si-II interfaces. c Simulated shifts of the Si-I/Si-II interfaces. In all the images the interfaces before the shifts are shown by dark blue and the
interfaces after the shifts are shown by red lines; solid lines denote currently existing interfaces and dotted dashed lines denote interfaces existing in
different states; directions of the shifts of the interfaces are shown by red arrows.
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microstructure in unstressed shape memory alloys requires zero
transformation volume strain and is produced by twin-within-
twin structures of the martensite only. Since conditions here are
very different (finite elastic deformation of both phases, large
transformation volumetric strain ϵv ¼ 0:237, very large twinning
shear of 1:655), this leads to completely different almost self-
accommodated bands I+ II nanostructure, which tolerates sig-
nificant local interfacial incompatibilities, and involves strongly
distorted metastable Si-I with F4 to reduce volumetric difference
with hydrostatically deformed Si-I. This determines specific
spacing (relative volume fraction) of bands I and II and their
unusual f111g interfaces. Thus, huge internal stresses, in parti-
cular caused by third variant, are necessary to retain Si-I deeply in
the region of stability of Si-II. This mechanism is consistent with
the later stage of the PT (Fig. S1 and Supplementary Movie 6):
with reducing volume fraction of remaining Si-I matrix and the
elastic constraint due to the matrix, volume fractions of band II
and of the variant F3 (λ3) reduce, and after Si-I matrix dis-
appeared, band II disappears as well leaving twinned Si-II and
relaxing elastic stresses. Significant relaxation of lattice distortions
in Si-II after completing PT was observed with XRD as well,
indicated by “streaky” Laue and arch-like monochromatic beam
reflections (Fig. 2). Thus, despite very different time and space
scales in MD simulations and experiments, they show surprising
and very nontrivial agreement in microstructure and
crystallography.

Strong local stress concentrator at the intermediate band II in Si
may be a cause for complex polymorphism of Si, leading under
different types of loadings and defects to different phases (Si-III, IV,
V, VIII, IX, XI, and XII, as well as amorphous Si). Understanding
and controlling these stresses and nanostructure may lead to con-
trolling selection of desired known and new (hidden) phases.
Obtained combined in situ experimental, MD, and theoretical
approaches open opportunities to study other high-pressure PTs in
Si and Ge and other materials with large transformations strains,
e.g., C, BN, and BCN systems (e.g., �0:39 for PT graphite to dia-
mond or hexagonal to cubic or wurtzitic BN). Obtained results also
challenge modern phase field approaches18–20 so that they can
describe the revealed nanostructures.

Methods
Simulation method. In this work, classical MD simulations were performed using
the LAMMPS package21. Simulations have been carried out at two constant tem-
peratures, 1 and 300 K, using the Nos�e–Hoover thermostat, and for multiple
geometries; the obtained nanostructure and even pressure for initiation of PT were
the same. The employed interatomic force field for the interactions between Si
atoms was from the Tersoff interatomic potential22. This potential has been
demonstrated to be successful in describing the crystal structure transition from the
diamond-cubic to β-Sn in single crystal silicon (Si-I to Si-II) under a uniaxial stress
of � 12 GPa10, which is close to the experimental value5–7. The advantage of the
Tersoff interatomic potential for the description of Si-I to Si-II phase transfor-
mation in comparison with four other potentials is demonstrated in12.

We are interested in introducing a single dislocation as a nucleation site for the
initiation of the Si-I–Si-II PT. However, to minimize its effect on the periodic
boundary conditions at the boundaries, dislocation dipole must be placed with
equal in magnitude but opposite Burgers vectors23,24. To reduce the effect of one
dislocation on the stress concentrator from another one, distance between
dislocations should be maximized. Figure 1a shows the computer model set-up of a
single crystalline silicon with static shuffle 60° dislocation dipole with Burgers
vector b ¼ 1=2½1�10� inserted by imposing the displacement field of dislocations13.
The dislocation dipole was put on the diagonal of the yz plane to maximize the
distance of the two dislocations. The dislocation internal stress field is shown in
Fig. 1a, c and is consistent with theoretical predictions13. Periodic boundary
conditions are applied along all three cubic directions to exclude free surface effect.
One of the simulation cells has dimensions of Ly � 99:7 nm and Lz � 130 nm and
the distance between dislocations of about 82:01 nm. The length Lx has been varied
at 1 K from 4 to 30 nm, with a sample containing around 2:5million to 15million
atoms, and the results are found to be independent of this length due to the
periodic boundary conditions applied. Another simulation cell has dimensions of
Ly � 199:4 nm, Lz � 260 nm, and Lx � 4 nm, with the distance between
dislocations of 164:02 nm containing around 10 million atoms and the

microstructure and the obtained at 300 K nanostructure and pressure for initiation
of the PT we the same as for smaller sample and 1 K. Thus, the effect of one
dislocation on the nucleation processes at another dislocation is negligible, and our
results can be interpreted as nucleation and growth at a single dislocation. The
pressure was applied to the system using the Berendsen algorithm25, in which the
instantaneous stress of the system was calculated using the virial formula.

Experimental method. High pressure Laue diffraction experiments have been
conducted using experimental setup available at 16 BMB beamline of Advanced
Photon Source3. Incident polychromatic beam, with the highest X-ray energy limit
about 90 keV, reached the sample through one of the diamonds while the diffracted
beams reached Perkin Elmer area detector, positioned at about 600 mm from the
sample and tilted vertically by 30� , through the other diamond. X-ray incident
beam was focused using KB-mirrors down to 3 ´ 3 μm2 at the half width of beam
profiles. The sample was cut manually from the same Si wafer (University Wafer26)
as for the previous research5 and had dimensions about 15 ´ 40 μm2. The sample
was put into a diamond anvil cell (DAC), having total opening of 60� , such that the
nearly flat surface parallel to a f110g plane was also parallel to plane of one of the
diamond anvils. The DAC was tilted vertically by 25° providing reasonable number
of reflections for indexation. Series of two dimensional (2D) translational scans
were collected on the sample across the transition with vertical translations along
½101� direction parallel to the longest sample dimension. The 2D scans were col-
lected on an area within the sample heaving size 10 ´ 10 μm2 with 1 μm step in both
directions, in 2.5 min each. Precise sample orientation with respect to the trans-
lational axes was determined at pressure right below the PT by indexation of
diffraction patterns: ½101� direction of the sample deviated by about 12° from the
vertical axis of translation and ½010� direction of the sample deviated by about 3°
from the horizontal axis of translation. Therefore, all the details of PT were pro-
jected onto a f110g plane with vertical axis of translation nearly parallel to a <110>
direction and horizontal axis of translation nearly parallel to a <100> direction.
Other details of experiment and data analysis are available in supplementary
materials.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon request.

Code availability
Software polyLaue to analyze Laue diffraction data is available from its author upon
reasonable request. Molecular dynamics simulation software LAMMPS is available from
its website.
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Supplementary Note 1: Application of the traditional crystallographic theory  

Transformation deformation gradients for three tetragonal variants of Si-II in a cubic coordinate 

are 𝐅𝑡
1 = {𝑎; 𝑎; 𝑏} , 𝐅𝑡

2 = {𝑎; 𝑏; 𝑎} , 𝐅𝑡
3 = {𝑏; 𝑎; 𝑎} , where 𝑎 = 1.175  and 𝑏 = 0.553  [1], i.e., 

transformation strains are very large, including large transformation volumetric strain 𝑑𝑒𝑡𝐅𝑡 =

−0.237. Using the crystallographic theory of martensite [2], we obtain that all variants are in a 

twin relationship with (110) twinning plane and very large twinning shear 𝛾 = 1.6548  . 

Compatibility condition for twinned Si-II – Si-I coherent interface with normal 𝐦 is 

 

𝐐′ ∙ (𝜆𝐐 ∙ 𝐅𝑡
2 + (1 − 𝜆)𝐅𝑡

1) = 𝐈 + 𝐛 ⊗ 𝐦           (1) 
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where λ is the volume fraction of variant 2 in the two-variant mixture, 𝐐 and 𝐐′ are orthogonal 

tensors, 𝐈 is the unit tensor, and 𝐛 is a vector. The solution to Supplementary Eq. (1) is 

 

𝐦 = [0.3313 −0.0961 0.3962];   𝐛 = [0.4099 0.2151 − 0.8864];   λ=0.7386.              (2) 

These results are far away from the results of MD simulations λ=0.5,  𝐦 = [1; 1; 1], which shows 

that the traditional crystallographic theory is not applicable, in particular, due to large elastic 

strains. 

Supplementary Note 2: Crystallographic theory for elastically deformed crystals 

 

Actual deformation gradients for martensitic variants F1,  F2, and F3, and distorted Si-I F4, as well 

as for Si-I matrix away from the interfaces F0, with respect to unstressed Si-I, determined from 

MD simulations, in a coordinate system 𝐗: [110], 𝐘: [1̅10], 𝐙: [001] are  

𝐅1 = [
0.8998 0.5631 0.0133
0.0046 0.7145 0.0361
0.0027 0.0300 0.9769

];       𝐅2 = [ 
0.9023 −0.5982 −0.0090

−0.0641 0.7119 0.0126
0.0030 −0.0698 0.9676

];                          (3) 

𝐅3 = [
1.0187 0.0473 −0.0023
0.0352 1.0538 −0.1832

−0.2028 0.2361 0.5124
];  𝐅4 = [

0.7926 0.0154 0.1625
0.1069 1.0139 −0.2713

−0.2078 0.2393 0.8684
]; 

 

𝐅0 = [
0.9035 0 0

0 0.9035 0
0 0 0.9035

] .                                                                                            (4) 

The best way to take into account the elastic deformation of the austenite Si-I is to consider 

deformed Si-I as the new reference configuration. Then, relative deformation gradients are Fi0= Fi 

∙ F0
-1

 , in particular,  

𝐅10 = [
0.9959 0.6232 0.0147
0.0051 0.7908 0.0400
0.0030 0.0332 1.0812

];   𝐅20 = [
0.9987 −0.6621 −0.010
0.071 0.7879 0.014

0.0033 −0.0772 1.0709
].                         (5) 
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Compatibility conditions for coherent interfaces between twins and twinned Si-II and Si-I with the 

normals 𝐧 and 𝐦 are: 

𝐐 ∙ 𝐅20 − 𝐅10 = 𝐚 ⊗ 𝐧 ;          𝐐′ ∙ (𝜆𝐐 ∙ 𝐅20 + (1 − 𝜆)𝐅10) = 𝐈 + 𝐛 ⊗ 𝐦 .                                        (6) 

According to MD simulations, we use 𝐧 = {111} and 𝜆=0.5. Then the solution to Supplementary 

Eq. (6) is  

𝐦 = [−0.3370 0.2862 −0.3899];  𝐛 = [−0.9050 0.1064 0.6937].                           (7) 

The angle between 𝐦 and [111̅] is 25.15𝑜, which is quite large. This shows that even when elastic 

deformations of both Si-I and Si-II are taken into account, the traditional solution for twinned Si-

II and Si-I interface is not an energy minimizer since MD simulations suggest a new, more 

sophisticated nanostructure.  

 

Supplementary Note 3:  Crystallographic analysis of the two-band nanostructure obtained 

in MD simulations  

To determine deviation from the Hadamard compatibility conditions for bands I and II across {111} 

interface, evaluated in terms of deformation gradients averaged of each band, we introduce the 

new Cartesian coordinate system, with axes 1 along [111] direction, and mutually orthogonal axes 

2 and 3 within {111} interface. For example, we the following orthonormal vector basis 

𝐚1 = [
1

√3

1

√3

1

√3
]

𝑇

, 𝐚2 = [−
2

√6

1

√6

1

√6
]

𝑇

, 𝐚3 = [0
1

√2
−

1

√2
]

𝑇

.                                         (8) 

 

Then, the orthogonal matrix transforming the original coordinate system to Supplementary Eq. (8) 

is 𝐑 =  [𝐚1 𝐚2 𝐚3]. The deformation gradients matrices in the current coordinate system, 𝐅iR =

𝐑 ∙ 𝐅i ∙ 𝐑T, are as follows: 
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𝐅1R = [
0.5087 0.1769 0.2078

−0.2188 1.0669 0.0583
−0.1864 0.0705 1.0156

] ;  𝐅2R = [
1.0876 −0.0583 −0.0363
0.3719 0.7281 −0.2394
0.2889 −0.2016 0.7660

] ;       

 

𝐅3R = [
1.0032 0.0877 −0.1220

−0.2448 0.7223 0.3177
0.1934 0.2393 0.8594

];    𝐅4R = [
0.8825 0.1025 −0.3435

−0.2789 0.8685 0.0240
0.1671 0.0316 0.9239

],                 (9) 

 

while  𝑭0 does not change. Averaged over bands I , II and I+II deformation gradients are  

𝐅I = 𝑐1𝐅1R + 𝑐2𝐅2R = [
0.7981 0.0593 0.0857
0.0765 0.8975 −0.0905
0.0513 −0.0656 0.8908

] ;    det𝐅I = 0.6246; 

 

𝐅II = 𝑐3𝐅3R + 𝑐4𝐅4R = [
0.9558 0.0935 −0.2090

−0.2582 0.7798 0.2023
0.1831 0.1577 0.8847

];   det𝐅II = 0.6921; 

 

𝐅av = 𝜆1𝐅1R + 𝜆2𝐅2R + 𝜆3𝐅3R + 𝜆4𝐅4R = [
0.8712 0.0712 0.0043

−0.0167 0.8952 −0.0098
0.0908 −0.0039 0.9203

] ;   

det𝐅av = 0.718,              (10) 

 

with  

𝑐1 = 0.5, 𝑐2 = 0.5; 𝑐3 = 0.6071, 𝑐4 = 0.3929; 

𝜆1 = 0.3742, 𝜆2 = 0.3742, 𝜆3 = 0.1740, 𝜆4 = 0.1126. 

Also, det 𝐅0 = 0.763. 

 

Let us evaluate jump in deformation gradient at different interfaces:  

 

𝐅I − 𝐅0 = [
−0.1054 0.0593 0.0857
0.0765 −0.0060 −0.0905
0.0513 −0.0656 −0.0127

]  ;      
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𝐅II − 𝐅0 = [
0.0523 0.0935 −0.2090

−0.2582 −0.1237 0.2023
0.1831 0.1577 −0.0188

]; 

 

𝐅av − 𝐅0 = [
−0.0323 0.0712 0.0043
−0.0167 −0.0083 −0.0098
0.0908 −0.0039 0.0168

]; 

 

𝐅II − 𝐅I = [
−0.1576 −0.0342 0.2948
0.3348 0.1177 −0.2928

−0.1318 −0.2232 0.0061
].                                                                 (11) 

 

 

Five components of these matrices located in the first row and column characterize strains normal 

to {111} interface, which do not participate in the Hadamard compatibility conditions. The 

remaining  2× 2 minors of these matrices describe interface distortion: 

 

 

𝐅||
𝐼 − 𝐅0|| = [

−0.0060 −0.0905
−0.0656 −0.0127

] ;     

 

 

𝐅||
𝐼𝐼 − 𝐅0|| = [

−0.1237 0.2023
0.1577 −0.0188

]; 

 

𝐅𝑎𝑣 − 𝐅0|| = [
−0.0083 −0.0098
−0.0039 0.0168

]; 

 

𝐅||
𝐼𝐼 − 𝐅||

𝐼 = [
0.1177 −0.2928

−0.2232 0.0061
].                                                                                        (12) 

 

For compatible interfaces that satisfy the Hadamard compatibility conditions, all matrices in 

Supplementary Eq. (12) are equal to zero. Since distortions are finite, to separate rotations and 

stretches, we  

(a) add to all of them I, transforming them to deformation gradient at the interface Fint, 
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(b) calculate the corresponding right stretch tensor  Uint =( Fint
T

 ∙ Fint)
0.5, 

(c) calculate the strain tensor Uint-I and its two-principle value, which we will call 

incompatibility Inc. 

Thus, for the band I-Si-I interface, Inc= (0.069; 0.087), i.e., corresponding strains are finite, which 

along with local stresses due to alternating twin tips cause nucleation of the band II. For the band 

II-Si-I interface, Inc= (0.117; 0.258), which causes much higher local stresses. For the band I- 

band II interface, Inc= (0.326; 0.201), which leads to huge local stresses.  All these interfacial 

stresses are short-range and partially relax by local atomic rearrangements and loss of coherence; 

see interfaces in Fig. 2b. However, averaged over the band I and band II deformation gradient Fav 

produces with Si-I very small incompatibility Inc= (0.004; 0.021).  In addition, normal to the {111} 

interface strain for bands I + II with res 

pect to Si-I is also very small (−0.032) and difference in volumetric deformation gradients det Fav 

- det F0= -0.045, i.e., very small as well.  All these facts produce almost self-accommodated band 

I + band II microstructure with small strain within Si-I matrix, and consequently, small long-range 

internal stresses. 
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Supplementary Note 4:  The later stages of the evolution of Si-II structure under high 

pressure 

 

Supplementary Figure 1 The later evolution of the microstructure growing from two dislocation-induced 

nuclei. Bands II (green) gradually disappear during the evolution (a-e), and the final microstructure consists 

of twinned Si-II variants with deformation gradients 𝐅1 and 𝐅2, separated by (110) twinning plane (f). 

Twinned bands nucleated from different dislocation sites meet with each other and form an intermediate 

amorphous phase (f).  

The initial evolution of Si-II exhibiting the nontrivial two-band structure is shown in Fig.  

3 in the main text. The later evolution of the microstructure is shown in Supplementary Figure 1. 

With reducing volume fraction of remaining Si-I matrix and the elastic constraint due to the matrix, 

the width of band II (green region) and the volume fraction 𝜆3 of the variant 𝐅3 reduce. After Si-I 

matrix disappeared, band II disappears as well, leaving twinned Si-II and relaxing elastic stresses. 

Significant relaxation of lattice distortions in Si-II after completing PT was observed with XRD 

as well, indicated by “streaky” Laue and arch-like monochromatic beam reflections (Fig. 2). The 

final stable structure is a twinned structure consisted of 𝐅1  and 𝐅2 , which corresponds to 

experiments (Fig. 2). Different twinned bands I nucleated from different dislocation sites can meet 

each other during evolution. When the twins match each other, perfect coalescence occurs, as 
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shown in Supplementary Figure 1(f). However, if they do not match each other, an intermediate 

amorphous phase is formed (Supplementary Figure 1). 

We need to mention some discrepancies between MD simulation and experiment related, 

most probably to dislocational relaxation of internal stresses in experiment and absence of 

dislocation activity in MD simulations, due to chosen interatomic potential and smaller time and 

space scales. Thus, large elastic distortions from cubic Si-I and tetragonal Si-II observed in MD, 

relaxed in the experiment due to dislocation activity and arrest the nanostructure of the type shown 

in Fig. 3, leaving significant misorientation of different domains of Si-II. In contrast, in MD 

simulations, after completing PT, intermediate bands and misorientation disappear, leaving almost 

perfect twinned structure (Supplementary Figure 1). 

Supplementary Note 5:  High-pressure Laue diffraction 

Supplementary Note 5.1: Experimental details and data analysis 

The Si sample was put into a diamond anvil cell (DAC) with culets having 500μm diameters using 

a micromanipulator [3]. Re gasket was pre-indented down to 60μm and, after that, a hole of 300μm 

diameter was drilled in the gasket with a laser drilling machine [4]. The DAC was loaded by He 

as a pressure transmitting medium.  While it is mentioned in [5] that He penetrates into SiO2 glass 

and essentially changes its compressibility and is detected in Raman spectra, we did not find any 

mentioning of such effects for Si-I in the huge existing literature. Even in [5], neither GeO2 glass 

nor crystalline phases of SiO2 demonstrated this phenomenon. 

Since pressure for Si-I to Si-II PT is well known and PT occurs at about 13 GPa ([3,6-10], we did 

not focus on precise detection of PT pressure in this study and did not use online Ruby fluorescence 

system to monitor pressure. The pressure was increased to approach the PT with the membrane 

system while measuring pressure using the off-line Ruby fluorescence system [11], available in 
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the experimental hutch. At 12.3 GPa, the DAC was mounted on the setup, and membrane pressure 

was further increased remotely in small steps, simultaneously collecting series of 2D scans. After 

each step of pressure increase, microstructural changes of the sample were watched in real time 

with ImageJ software [12]. Only if no notable changes were observed during multiple 2D scans 

was pressure increased by another step. After about 14 hours, the first changes in the sample due 

to the PT transition were observed, and membrane pressure was not increased any more. The 

transition was mainly completed in 38 minutes, although a small piece of the initial Si-I sample 

existed even more than 4 hours after the transition in the other parts of the studied area was finished 

(see below). The pressure was measured again with the Ruby system, 22 hours after the data 

collection procedure started, and found to be 13.8 GPa. Therefore, the pressure rate was less than 

0.1 GPa/hour in average; although it was higher before the transition (as membrane pressure was 

increased) and, most likely, pressure still slightly increased also after the transition (as typically 

DACs have some pressure drifts even without an increase of membrane pressure). Note that the 

current pressure controlling system cannot control pressure with better precision than a few 

kbar/hour. Thus, PT occurred at ~13 GPa, and the estimated pressure increase during 38 minutes 

between initiation and completion of PT should not exceed 0.1 GPa. The pressure range and 

pressure rate here are like that in [3,6] (0.2-0.3 GPa/hour); thus, combining results from both 

experiments is legitimate. 

As the sample position may slightly shift due to increased pressure, the sample was periodically 

re-centered on the rotation axis by doing absorption scans with a photodiode to keep the sample at 

the same position with respect to the X-ray beam and area detector [13,14]. No re-centering was 

done after alterations of the sample started, but after the data collection was finished, sample 

position with respect to the beam was re-determined, and shift of the sample relative to the 
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previously determined position was less than 1 μm. This indicates that all the 2D scans were 

collected on the same area of the sample across the transition.  

The data analysis procedure consisted of two steps [3]. Laue reflections from the sample were 

indexed first in order to identify crystals and find their orientations. After that, maps of reflections 

have been generated to detect changes of crystal morphology and deformation of the crystals due 

to the transition. Indexation and mapping of reflections were done with software polyLaue 

developed in-house by D. Popov [3]. Diffraction patterns have been visualized with the Dioptas 

program [15,16]. Maps of reflections have been visualized with the Fit2d program [17,18]. The 

strongest reflections from diamonds may damage the area detector. Therefore, such reflections 

were blocked by a detector mask [3]. All other reflections from diamonds have been identified by 

indexation and excluded from further data analysis.  

Supplementary Note 5.2: Results and discussion 

A typical diffraction pattern and map of a reflection right on the onset of the transition are 

presented in Supplementary Figure 2. The numbering of all other 2D scans considered below starts 

from this scan. During the first five 2D scans, starting from the onset, the sample exhibited severe 

deformation. Positions of reflections substantially variated across the sample, indicating variation 

of crystal orientation. At the same time, crystal morphology also changed because some parts of 

the sample transformed to Si-II. All the maps of reflections obtained during scans 1-5 were very 

different from each other, even if they were obtained from adjacent scans because sample 

alterations took shorter periods of time than required to collect one 2D scan. Therefore, changes 

of the sample during scans 1-5 could not be identified.  
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Supplementary Figure 2 Laue diffraction pattern (left) and map of 202 reflection (right) from Si-I obtained 

right on the onset of the α→β transition. Predicted positions of reflections, assuming the highest X-ray 

energy limit of 80keV and d-values of reflections larger than 0.5Å, are shown on the diffraction pattern as 

white rectangles slightly shifted to the right not to overlap with the observed reflections. Black rectangle in 

the diffraction image denotes an area used to build the composite frame in the right. The step size of the 

translational scan was 1 μm. The numbering and time intervals of the scans mentioned in the Supplementary 

materials, movies and other figures start from the scan presented in this figure. Areas within red and green 

boxes are occupied by the Si-I crystals referenced in the Supplementary materials as crystals 1 and 2, 

respectively. These areas are presented in Supplementary movies 1-4. Reflections from diamonds on the 

Laue pattern are denoted by red transparent rectangles. White circles on the Laue image are due to the 

detector mask.  
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          Starting from 2D scan 6, only a few pieces of the original Si-I sample remained in the studied 

area. Still, these crystals were stable enough to produce maps of reflections reproducible during 

multiple 2D scans, and, therefore, it was possible to identify these crystals. Maps of reflections 

and diffraction patterns, obtained during multiple 2D scans from two of these crystals, were 

combined in the same order as these maps, and diffraction patterns were obtained (Supplementary 

movies 1-4). These crystals are referenced below as crystal 1 (Supplementary movies 1 and 2, area 

outlined in red in Supplementary Figure 2) and crystal 2 (Supplementary movies 3 and 4, area 

outlined in green in Supplementary Figure 2).  

 

Supplementary Figure 3 Diffuse reflections from Si-II. White circles are due to the detector mask. Red 

rectangles denote reflections from diamonds.  
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After the onset of the transition, very diffuse reflections from the high-pressure phase were 

observed (Supplementary Figure 3). ‘Streaky’ shape of these reflections indicated that the product 

Si-II phase exhibited strong misorientation of its nanodomains. This observation agrees with the 

previous results [3,6]. Indexation of reflections from Si-II was impossible.  

 

Supplementary Figure 4 Angular deviations versus time of Si-I crystals, referenced in the Supplementary 

materials as crystals 1 (gray) and 2 (blue), from the parental Si-I crystal at the onset of the α→β transition. 

These deviations may include rigid-body rotation of the entire sample due to a change in its shape. Angles 

between crystals 1 and 2 versus time (yellow). Vertical arrows denote time points when crystal 1 exhibited 

a much faster decrease of its size than on average. Time starts from the scan presented in Supplementary 

Figure 2.  

            Due to the deformation process, orientations of crystals 1 and 2 were shifted by about 3.5° 

with respect to the sample orientation, which was observed right on the onset of transition. 

Orientations of crystals 1 and 2 were also shifted with respect to one another by about 1.8°. 

Absolute and relative angular deviations of crystals 1 and 2 gradually increased further across the 

transition (Supplementary Figure 4). In about 20 minutes, absolute and relative angular shifts 
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reached about 4.5° and 2.8°, respectively. Strong deformation of the sample right after the onset 

of the transition and relative angular shifts of crystals 1 and 2 are caused by heterogeneous internal 

stresses due to transformation strain in Si- II phase. Interaction of the sample with pressure medium, 

diamond, and gasket mainly contributes to the absolute angular shifts due to rigid-body rotation of 

the entire sample but essentially does not affect relative angular shifts of crystals 1 and 2.  

            Results from crystal 1 indicate that the speed of the transition can be fundamentally faster 

comparing to what can be concluded based on the total time of transition. Starting from 2D scan 

6, crystal 1 existed for about 26 minutes before it was completely transformed to Si-II. However, 

mostly, the transformation took place in two short periods of time, less than a minute each, between 

scans 9 and 10 and between scans 13 and 14 (Supplementary movies 1,2). Interestingly, during 

these two periods of time, both crystals 1 and 2 exhibited shifts of their absolute orientations 

notably higher than on average while their relative orientation changed as normal (Supplementary 

Figure 4 and 5). This is the indication that these two periods of time, when the transition was 

fundamentally faster than in average, were accompanied by substantial changes of orientation of 

the entire sample or, if the sample was fragmented (broken) to smaller pieces because of the 

deformation, by reorientation of the pieces of the sample containing crystals 1 and 2 as a whole.  
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Supplementary Figure 5 Angular shifts between adjacent scans versus time for Si-I crystals, referenced 

in the Supplementary materials as crystals 1 (gray) and 2 (blue), across the α→β transition in Si. Vertical 

arrows denote time points when crystal 1 exhibited a much faster decrease of its size than on average. Time 

starts from the scan presented in Supplementary Figure 2.  

            Variations of the transition speed can be explained by the known fact that the speed of 

transition is substantially controlled by crystal lattice defects (not included in the simulations), 

introducing activation barriers. Due to heterogeneity of the defects distribution, interface 

propagation rate may vary significantly. After waiting for a long time near an obstacle with high 

activation barrier and then overcoming it with the help of strong thermal fluctuation, some portion 

of the interface may travel fast for a relatively large distance until it meets the next strong barrier.  

At the same time, crystal 2 does not exhibit any notable acceleration of the transition 

simultaneously with crystal 1 (Supplementary movies 1-4). This indicates that crystal lattice 

defects, individual for each of the crystals, are the major factor defining the speed of transition. 

Starting from 2D scan number 16, after 38 minutes from the first 2D scan, no Laue reflections 

from Si-I except those from crystal 2 were observed on the studied area of the sample. Crystal 2 
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was not transformed to Si-II phase even 4 hours 2 minutes after scan 16, when Laue diffraction 

measurements were finished (Supplementary movies 3, 4). This agrees with the defect-controlled 

transformation speed and thermally activated mechanism of the interface motion.  

            Crystals of Si-I, coexisting with Si-II, may exhibit changes in their deformation state, 

which agrees with the previous results [3,6]. A possible explanation of these changes is essentially 

the same as for the reorientations of Si-I crystals across the transition. For instance, crystal 2 

produced sharper reflections starting from 2D scan 10, compared to the previous scans, indicating 

a relaxation process. When the transition was almost finished in the studied area and only crystal 

2 coexisted with the high-pressure phase, crystal 2 exhibited quite notable changes in its 

deformation state. Reflection 111 became much more broaden comparing to 11̅1. One possible 

explanation of this observation is that crystal 2 may become slightly bent cylindrically around a 

direction close to 11̅1 [19]. Similar lattice rotation of Si-I crystals coexisting with Si-II has been 

reported previously [3,6].  
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Supplementary Figure 6 Shifts of the Si-I / Si-II interfaces (denoted by red arrows), projected onto a {110} 

plane of the Si-I crystal referenced as crystal 1 in the Supplementary materials. Shifts of the Si-I / Si-II 

interfaces are detected from maps of 202 reflection. The intensity scaling of both maps is kept the same 

before and after the shift as defined in Fit2d program [17,18]. The interfaces before and after their shifts 

are denoted by dark blue and red lines, respectively; solid lines denote currently existing interfaces, and 

dashed lines denote interfaces existing in different states. The numbering and time intervals of the scans 

start from the scan presented in Supplementary Figure 1.  
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           Maps of crystals 1 and 2, obtained in real-time, provide information on the orientation of 

the Si-I / Si-II interface as projected onto the {110} plane approximately perpendicular to the 

incident beam. Edges of crystals 1 and 2, projected onto the {110} plane, are oriented about parallel 

to one of the following directions <111>, <110> or <100> (Supplementary movies 1-4). However, 

this criterion for the interface is not reliable because the edges of the crystals may have been 

formed by cracking the original sample due to the deformation process and not by the interface. 

Much more reliable way to detect the interface between parental and product phases is the 

observation of shifts of the parental phase edges across the transition. Crystal 1 exhibited very 

notable shifts of the Si-I / Si-II interface, detected this way, between scans 9 and 10 

(Supplementary movies 1, 2) and between scans 13 and 14 (Supplementary Figure 6 and movies 

1 and 2). These shifts indicate interfaces parallel to <110> and <100>.  

Experiments also reveal that: (a) this PT is rather nucleation controlled because after 

nucleation it proceeds until completing at the same pressure; (b) kinetics is thermally activated, 

with two burst-like fast transformation increments and slow transformation otherwise; (c) speed 

of transition is controlled by kinetic factors not included into the simulations. These factors are 

defined by defects of the original Si-I single-crystal because the speed of the PT is quite different 

in different regions of crystals. 

Supplementary Note 6: Reconstructive versus martensitic phase transformation from Si-I to 

Si-II 

 The potential problem often arises from the different classifications of structural PTs in 

different communities. One of the communities, which focuses on bonding between atoms, calls 

PT a reconstructive if it involves breaking/changing the bonds; see the book [20]. Alternative PTs 

without bond breaking are often called displacive. Then the PT from the semiconductive Si-I to 
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metallic Si-II clearly belongs to reconstructive PTs [20-23]. There are some other features of these 

groups of PTs, e.g., reconstructive PT involves large displacements, and no group-subgroup 

relationship exists between phases, while for displacive PTs, displacements are small, and phases 

obey group-subgroup relationship [20]. Communities that are concerned with material science, 

crystallographic, and microstructural aspects do not care about bonding and divide structural PTs 

into diffusive and diffusionless or martensitic [2,24-27]. Diffusive PTs are accompanied by 

diffusion and exchange of atomic neighbors during PT, like amorphization and PT occurring via 

intermediate disordered/amorphous state, precipitation, eutectoid, and massive PT, as well as 

ordering. Martensitic PTs, in contrast, do not involve diffusion and exchange of atomic neighbors, 

and mapping of positions of two lattices can be presented by homogeneous deformation 

(transformation deformation gradient) and some additional intra-cell displacements called shuffles 

or shifts. Twinning is considered a particular case of martensitic PT, for which the same lattices 

are connected by a transformation deformation gradient representing simple shear along the 

twinning plane. Internal stresses and evolution of martensitic microstructure are determined by 

minimization of the elastic energy, which, in addition to an external load, is completely determined 

by the field of the transformation deformation gradient and is independent of shuffles. That is why 

the main parameter in the crystallographic theory and theory of the microstructure is the 

transformation deformation gradient [2,27], independent of breaking or not breaking bonds. These 

theories determine, based on the transformation deformation gradient and assumed mode of the 

lattice-invariant shear (slip or twinning), normal to the habit and twining planes, the volume 

fraction of twin-related martensitic variants (see Supplementary Eqs. (1)-(2)), and orientation 

relationship between lattices of different phases [2,27].  
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 Most of the reconstructive PTs discussed in the monograph [20] are described by the 

crystallographic theory of martensitic PTs, including PT in iron [27], shape memory alloys [2], 

plutonium [28], and hexagonal and rhombohedral graphite to hexagonal and cubic diamond and 

similar PTs in BN [29,30]. It is mentioned in [30] that graphite-like phases of BN have very strong 

covalent bonds with sp2 hybridization within the hexagonal planes and weak van der Waals bonds 

between these planes, while cubic or wurtzitic superhard BN have only covalent (partially ionic) 

bonds, with tetrahedral three-dimensional sp3 hybridization; the same is true for graphite and 

diamond. Despite the reconstructive PT between these phases, all aspects of crystallographic and 

microstructure formation theory are applied in [29,30] to these PTs; they are called martensitic in 

[29].  

           With a full understanding of change in bonding during PT Si-I – Si-II in [1,31], it is treated 

as martensitic PT in which the transformation deformation gradient connects atoms of Si-I and Si-

II lattice even without shuffles. All continuum theories of PTs involving the transformation 

deformation gradient (e.g., based on energy minimization [2] or phase field theories [32-31], 

including those for Si [32-34]) do not distinguish bonding. However, some works distinguish 

between reconstructive martensitic PTs, for which no group-subgroup relationship exists between 

phases, and “weak” martensitic PTs, for which phases obey group-subgroup relationship [35,36]. 

Reconstructive martensitic PTs are more complex for modeling because the reverse PT may occur 

to different variants of the austenite related by a lattice-invariant shear. But this is not the case for 

cubic to tetragonal PT Si-I – Si-II. 

           To summarize, various definitions of martensitic and reconstructive PTs are used by 

different research communities depending on their goals. For example, the firefighters distinguish 

a violin from a piano in a simple way: the piano burns longer, which is sufficient for their goals. 
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Since our main goal here is crystallography and microstructure rather than atomic bonding, we call 

Si-I to Si-II PT martensitic. Our results and conclusions would not change if we called them 

reconstructive or by any other name.  
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