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Numerous experiments have documented that combination of severe plastic deformation and high mean pressure during high-pressure
torsion in rotational metallic, ceramic, or diamond anvils produces various important mechanochemical effects. We will focus here on four of
these: plastic deformation (a) significantly reduces pressure for initiation and completion of phase transformations (PTs), (b) leads to discovery of
hidden metastable phases and compounds, (c) reduces PT pressure hysteresis, and (d) substitutes a reversible PT with irreversible PT. The goal of
this review is to summarize our current understanding of the underlying phenomena based on multiscale atomistic and continuum theories and
computational modeling. Recent atomistic simulations provide conditions for initiation of PTs in a defect-free lattice as a function of the general
stress tensor. These conditions (a) allow one to determine stress states that significantly decrease the transformation pressure and (b) determine
whether the given phase can, in principle, be preserved at ambient pressure. Nanoscale mechanisms of phase nucleation at plastic-strain-induced
defects are studied analytically and by utilizing advanced phase field theory and simulations. It is demonstrated that the concentration of all
components of the stress tensor near the tip of the dislocation pileup may decrease nucleation pressure by a factor of ten or more. These results
are incorporated into the microscale analytical kinetic equation for strain-induced PTs. The kinetic equation is part of a macroscale
geometrically-nonlinear model for combined plastic flow and PT. This model is used for finite-element simulations of plastic deformations and
PT in a sample under torsion in a rotational anvil device. Numerous experimentally-observed phenomena are reproduced, and new effects are
predicted and then confirmed experimentally. Combination of the results on all four scales suggests novel synthetic routes for new or known
high-pressure phases (HPPs), experimental characterization of strain-induced PTs under high-pressure during torsion under elevated pressure.
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1. Introduction

Large plastic deformations and their effects on various
structural changes in solids have been intensively studied,
starting with pioneering work by Bridgman.'™ A special
device, rotating Bridgman’s anvils made of hard alloys or
metals was used for the study of plastic flow and grain
refinement during plastic flow,>*® as well as to examine
the effect of plastic shear on PTs'*"'¥ and chemical
reactions.!#1510) At the same time, the high-pressure
community studied material behavior, including PTs and
chemical reactions in diamond anvils. As a merger of these
two devices, rotational diamond anvils (Fig. 1) have been
invented”!” and further developed.'® An advantage of
rotational diamond anvils is that they allow in situ study of
pressure distribution”!*? and distribution of the volume
fraction of phases;*! performance of optical, Ramam, and
other investigations; and the achievement of much higher
pressure, up to one hundred GPa.

Among multiple phenomena, we will focus on the
following ones:

(1) Superposition of plastic straining on high pressure
may result in the appearance of new (hidden) phases
or reaction products that were not or could not be
achieved under hydrostatic conditions,!”1%-2023-25) [
particular, superhard phase IV of fullerene was first
obtained under shear in Refs. 7, 20) and confirmed in
Ref. 19). We recently obtained a new high-density
amorphous phase of SiC, while amorphization is not
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Fig. 1 Schematics of rotational diamond anvil cell. The sample is within a
gasket compressed by diamond anvils. One of the anvils is then twisted

under a constant load, superimposing large plastic deformation on high
pressure. In some cases, the sample and gasket are of the same material.

observed even up to 135GPa under hydrostatic
conditions.

(2) Plastic deformation decreases the pressure for initiation
and completion of some PTs and chemical reactions,
even up to an order of magnitude PTs.7-%1516,19.20.23-27)
For example, shear strain reduced the transformation
pressure from 9 to 3 GPa for PT from diamond-cubic Si
I and Ge I to bee Si III and Ge III; from 12.3 to 5.7 GPa
for PT from Si III to metallic Si II, and from 9.3 to
4.2 GPa Ge Il — Ge II PT.” The largest transformation
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pressure drop, from 52.5 to 6.7 GPa, was obtained in
Ref. 26) from hexagonal nanocrystalline BN with high
concentration of the turbostratic stacking fault to
wurtzitic BN, which is a superhard phase. Note that
the thermodynamic equilibrium pressure for this PT is
negative.?®)

(3) Plastic deformation may substitute a reversible PT
with irreversible PT."37321.27.29) This allows one to
utilize these metastable HPPs in various applications at
ambient pressure.

(4) Plastic straining may reduce the pressure hysteresis
(i.e. the difference between pressure for direct and
reverse PTs), even to zero, e.g. for PTs in KCL,7? Zr, and
Ti.3?

(5) If plastic straining stops at relatively low pressure, the
PT does not occur.”3'%?02327) Thys, time is not a
kinetic parameter and some measure of plastic strain
governs the PT kinetics.

In this review paper, we analyze our current understanding
of the above phenomena based on our developed multiscale
theories and computer modeling. Note that we will not
discuss the effect of plastic strain on diffusion and diffusive
PTs here. Some reviews on this topic can be found in Refs. 7,
8, 25).

2. Classification of High-Pressure Transformations:
Pressure- and Stress-Induced vs. Strain-Induced

As was demonstrated in Ref. 31), traditional thermody-
namics, even after substituting pressure and volume with
stress and strain tensors, cannot explain the experimentally-
observed drastic decrease in PT pressure caused by shear
stresses or plastic strains. The main reason for this is that the
shear stresses are limited by an engineering (macroscopic)
yield strength, e.g. 1GPa, and its contribution to the
thermodynamic driving force for PT is small in comparison
with the hydrostatic pressure, e.g. 10 GPa.

No publications that explain and characterize any of the
above mechanochemical phenomena were available before
2004, and the actual physical mechanisms remain unknown.
Even the fundamental dissimilarity between the pressure-
induced PTs under quasi-hydrostatic loading and plastic
strain-induced PTs at elevated pressure was not realized prior
to the appearance of our papers.’**> Pressure- and stress-
induced phase transformations start at crystal defects that
naturally exist in a material and when stresses do not reach
the yield limit. These defects (e.g. various dislocation
structures or grain boundaries) produce stress concentrators
and serve as nucleation sites for a phase transformation. First,
nucleation occurs at defects with the strongest stress
concentration; pressure should then be increased to cause
nucleation at defects with decreasing level of generated
stresses. An overview for analysis and characterization of the
pressure-induced and stress-tensor-induced PTs can be found
in Ref. 32).

Plastic strain-induced phase transformations take place by
nucleation and limited growth at defects, produced in the
course of plastic straining. The largest stress concentration
can be produced at the tip of the dislocation pileups. Indeed,
all stress components (and, consequently, pressure) oj; ~ N,
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where N is the number of dislocations in a pileup. Since
N =10-100, local stresses could be huge and can be
increased by growing plastic deformation at relatively low
pressure, thus driving phase transformations. An important
point is that the deviatoric (nonhydrostatic) stresses near the
defect tip are not bounded by the engineering yield strength
but rather by the ideal strength in shear for a defect-free
lattice, which may differ by a factor of 10 to 100. Local
stresses of such magnitude may result in nucleation of the
high-pressure phase at an applied pressure that is not only
significantly lower than that under hydrostatic loading but
also below the phase-equilibrium pressure. In addition, such
highly-deviatoric stress states with large stress magnitudes
cannot be realized in bulk. Such unique stresses may lead to
PTs into stable or metastable phases that were not or could
not be attained in bulk under hydrostatic or quasi-hydrostatic
conditions. It was concluded®*?> that plastic strain-induced
transformations require very different thermodynamic,
kinetic, and experimental treatments than pressure- and
stress-induced transformations.

3. Crystal Lattice Instability Criteria: Phase Field
Approach, Molecular Dynamics, and First Principle
Approaches

Barrierless nucleation during displacive PT usually occurs
due to local lattice instability. Therefore, one must find the
thermomechanical instability criteria for a perfect lattice
under the general stress tensor, which will represent the PT
criteria for perfect lattices. This seemed to be impossible due
to the large number of combinations, but unexpected
guidance came from the PT criterion analytically formulated
within the large-strain phase field approach (PFA)*® under
action of all six stresses oj. Molecular dynamics simu-
lations**** and the first-principle simulations®® were then
performed to find lattice instability conditions for cubic-to-
tetragonal PT between diamond cubic phase Si I and metallic
phase Si 11, in both directions. The results for Si I — Si Il PT
obtained with molecular dynamics and first-principle
simulations are quite close. The lattice instability criteria
for direct and reverse PTs are both found to be linear in
normal-to-cubic-faces stresses o;, in accordance with the PFA
predictions. Each criterion contains only two material
parameters, which can be determined by atomistic simu-
lations for two different normal stress states. Through
geometrically-nonlinear terms that reflect change in the
shape of the sample due to shear, these criteria are slightly
dependent on the shear stresses at cubic faces. The strong
effect of deviatoric stresses is found (Fig. 2). In particular, the
mean stress required for PT from Si I to Si II under uniaxial
compression is lower by a factor of 21 than that under
hydrostatic loading. While the required non-hydrostatic
stresses cannot be achieved in the actual defective bulk
material because the macroscopic yield strength is much
lower, they can be generated by the dislocation pileup with
large N, which will lead to the experimentally-observed
applied PT pressure.

In addition, atomistic simulation provided information,
material functions and parameters for developing and
calibrating our phase field models.?”-*)
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Fig. 2 Phase transformation criteria in terms of stress o3 vs. o = 0, for
direct (D) Si I-to-Si I and reverse (R) Si II-to-Si I phase transformations
from the first-principle simulations and molecular dynamics simula-
tions,*3% as well as the metallization criterion from the first-principle
simulations. This figure is reproduced with permission from Ref. 36).

4. Phase Nucleation at Dislocation Pileups

An analytical solution for barrierless nucleation of the
HPP at the tip of the dislocation pileup**?® confirmed our
hypothesis that for large enough N, nucleation pressure may
be lower, by a factor of 10, than under hydrostatic loading
with a single dislocation. However, the problem formulation
was oversimplified, including linear elasticity, small strain
formulation, infinite space, and no stress relaxation at the tip
of the dislocation pileup. For a much more realistic treatment,
the first PFA for the coupled dislocation and phase structure
evolution was suggested;*'***?) this approach synergistically
combines the most advanced large-strain theories for
martensitic PTs>**34 and dislocations,**® with multiple
interaction terms. The developed PFA was implemented in
a finite element method (FEM) code COMSOL and was
utilized for the first study of nucleation and growth of the
HPP under normal stress and shear strain (Fig. 3)3!3%4142)
in a bicrystal. The obtained results prove that the super-
imposed plastic shear can reduce PT pressure by a factor of
10 and more.
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However, plasticity does not only facilitate PT by
generating stress concentrators (Fig. 3(a)); it also relaxes
these stresses at the tip of the dislocation pileup, reducing
the promoting effect (Fig. 3(b)). Some examples of finding
loading processes that allow PT to overcome dislocation
plasticity can be found in Ref. 31).

For a neglected jump in elastic moduli and surface energy,
the thermodynamic condition of phase equilibrium for any
material points of a phase interface is

ojef; = AG’. (D

Here, o; jsﬁj is the transformation work, which is the sum of
the product of the components of stress tensor o; and
corresponding components eﬁj of the transformation-strain
tensor, and AG? is the jump in the thermal part of the free
energy. For the obtained stress tensor fields, the contour lines
corresponding to the thermodynamically-equilibrium value
of the transformation work are presented in Fig. 3(a) and (b).
It is clear that the local phase-equilibrium condition is
satisfied for the major parts of the phase interfaces. Note that
a similar criterion is also approximately fulfilled for stresses
averaged over the HPP or the grains.>**!#?) These results are
very important for the developing microscale coarse-grained
theories.

Microscale PFA to multivariant martensitic PTs was
developed,*”*®) combined with discrete dislocation evolution
within shear bands utilizing contact problem formulation,*”
and used for the modeling of high-pressure phase evolution
at dislocation pileups. Microscale PFA reproduces results of
the nanoscale PFA shown in Fig. 3(a) and (b) reasonably
well. In addition, due to its scale-free nature, it was also
applied for a much larger sample.

5. Retaining of Metastable High-Pressure Phases under
Ambient Pressure

This is the key goal if one wants to utilize the metastable
HPPs for any real-world applications. The first step is to
confirm that, for a given phase, the stress-free state does not
meet the PT conditions under the stress tensor for the reverse
PT to a low-pressure phase (LPP), obtained using atomic
simulations;**3% then the phase is indeed a metastable one
rather than unstable and can in principle be arrested at
atmospheric pressure. The best way is to produce complete
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Fig. 3 Stationary solutions for interaction of the phase transformation to a HPP (red color) and dislocations in a bicrystalline sample
subjected to normal stress and shear strain, without (a) and with (b) plasticity in the right grain. Dislocation pileup causes PT at pressure
(averaged over the grain) significantly smaller than under hydrostatic loading with a single dislocation. Dislocations promote PT by
producing stress-tensor concentrators (a) but also suppress PT through relaxation of stresses near the tip of the dislocation pileup (b). The
contour lines of the equilibrium PT work are presented in black and, in most cases, coincide with the stationary phase interfaces. This

figure is reproduced with permission from Ref. 39).
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PT to the HPP so that reverse PT would require nucleation,
which may have a high barrier. If nucleation can occur or if
residual LPP is unavoidable, growth of the LPP should be
suppressed by producing obstacles to interface motion,
increasing its athermal (threshold-type) friction. This can be
done by plastically deforming the HPP above p!, pinning
interfaces by dislocations, grain boundaries, point and other
defects. These defects all produce resistance to the interface
motion.’” At the same time, these defects may promote
nucleation of LPP in some cases by producing stress
concentration or changing chemical energy. Reduction in
the grain size also increases pressure hysteresis and allows
one to retain metastable HPP, e.g. in oxides ZrO,, Y03,
BaTiO;, AlL,Os, TiO,, and iron oxides.>” From the macro-
scopic point of view, the pressure hysteresis for pressure-
and stress-induced PT is proportional to the current value
(under current plastic strain) of the yield strength.’-42351
Plastic strain and grain refinement increase (until saturation)
the yield strength and, consequently, pressure hysteresis,
which may prevent the reverse PT.?*? One must also find an
unloading process of the sample in anvils, which minimizes
or completely eliminates plastic straining below p’,
minimizing or eliminating strain-induced reverse PT.32-%

6. Thermodynamically Consistent Kinetics of Plastic
Strain Induced Phase Transformations at the Micro-
scale

A thermodynamically-consistent kinetic equation for the
volume fractions of an HPP was derived in Refs. 24, 25) for
the two-phase systems and in Ref. 54) for the multiphase
systems. It was motivated by the results of our nanoscale
studies, specifically by solutions of problems on nucleation at
dislocation pileup’*?® and nucleation at the shear-band
intersection in TRIP steel’® at normal pressure. An additional
thermodynamic driving force due to a strain-induced pressure
concentrator was included and connected to plastic strain.
Since dislocation pileups cause stresses of both signs of the
same magnitude in regions with extra and missing atomic
planes, respectively, they facilitate direct and reverse PTs in
corresponding regions at the same time. This is included in
the kinetic equation in terms of similar contributions for
direct and reverse PTs. Because of the experimental results
summarized in item 4 of Section 1, time is not an important
parameter and is substituted with the accumulated plastic
strain ¢. Also, it is taken into account that plastic strain is
larger (or smaller) in the phase with the smaller (or larger)
yield strength.

Among multiple material parameters in the kinetic
equation, two are the most important: p¢, the minimum
pressure below which a plastic strain-induced PT from LPP
to HPP is impossible, and p’, the maximum pressure above
which a strain-induced PT from HPP to LPP is impossible.

For PTs that are strongly affected by plastic strain, i.e. for
which pg < p?, and for pressure p‘j < p < pi, a stationary
solution for the kinetic equation is shown in Fig. 4. The
prediction in Refs. 24, 25, 54) of the existence of a stationary
two-phase solution (and, more generally, stationary n-phase
solution in Ref. 54)) and its independence of the loading
history is confirmed experimentally in Ref. 56) by observed
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Fig. 4 The stationary value of dthe volume fraction of the HPP wvs.

dimensionless pressure p = ,f ;_”p - Numbers near curves designate values
of a parameter M, which is proportional to the ratio of the yield strengths
in compression of the HPP and LPP. For any pressure p and volume
fraction of the HPP corresponding to a stationary value ¢y, any
infinitesimal pressure decrease (or growth) followed by plastic shearing
will result in PT to LPP (or HPP) until a new stationary state is reached.
This means an infinitesimal difference between pressures for direct and
reverse PTs, i.e. pressure hysteresis. This result is in agreement with the
experiments in Refs. 7, 30). Reproduced with permission from Ref. 25).
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incompletion of various PTs, and by the existence of the
stationary state independent of the processing history
(equifinality). In turn, existence of the stationary solution
with incomplete PT means that p¢ < p’ for a given PT and
that PT is strongly affected by plastic strain. Note that another
contribution to the incompleteness of a PT may come from
heterogeneous stress-strain fields in a sample in rotational
diamond anvils.

As follows from Fig. 4, the stationary volume fraction of
the HPP grows with the increasing ratio of the yield strengths
in compression of the HPP and LPPs. This means that
superimposing plastic shear under pressure is a promising
way to promote strong and superhard HPPs. Intuitively, this
is not surprising, because plastic deformation is larger in the
weaker phase and smaller in the stronger phase. Weak phases
cannot be obtained in large amounts for pressure slightly
higher than p?; this can only be done close to the pressure p’
(Fig. 4). Note that the above discussion is only valid for
pe < pi.

Figure 4 allows us to interpret the absence of the pressure
hysteresis found experimentally for ¢ <> w PT in zirconium
and titanium®” in rotational Bridgman anvils as well as for B,
to B, PT in potassium chloride? in rotational diamond anvils.
This does not, however, mean that the phase-equilibrium
pressure is determined, because a zero-pressure hysteresis
can be obtained for any pressure in the range p? < p < p".

In the opposite case of p¢ > p’, a stationary solution,
which can be reached for large plastic strains, is very simple:
the complete LPP exists below p?, the complete HPP can
only be found above p’, and strain-induced PTs do not occur
in the range p. < p < pd. Thus, two-phase stationary
mixture and zero-pressure hysteresis are impossible for this
case.

Kinetics of multiphase strain-induced PTs was analyzed in
Ref. 54). One interesting result for PTs in silicon was related
to a non-monotonous variation of the volume fraction of
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metallic Si II during plastic straining at fixed pressure. While
Si II is practically absent in the stationary solution, which is
reached for very large plastic strain, it is detectable at
relatively small plastic strains. The same may happened for
some hidden (unknown) phases to be searched, meaning that
the generic wisdom that the plastic strain should be maximal
is not true. Plastic strain should be optimal. There are various
other reasons for this statement, one of which is found?" for
PT from hexagonal BN to superhard wurtzitic BN; this is
related to an increase in the concentration of the turbostratic
stacking fault with the plastic strain, which strongly
suppresses PT. Another reason is related to the macroscopic
behavior of the sample, specifically to reduction in the width
of a sample in the course of rotation of an anvil,”> which
reduces the mass of the HPP.

7. Macroscale Modeling of Combined Plastic Flow and
Phase Transformation in a Sample in Rotational
Anvils

7.1 Modeling of plastic flow

It was found® for more than 60 materials (simple metals
and alloys, minerals, oxides, etc.) that, for monotonous and
quasi-monotonous loadings and plastic strain exceeding a
certain critical value, the initially-isotropic polycrystals
deform as the perfectly plastic (i.e. without strain hardening
or softening) and isotropic material with a strain-history-
independent limiting surface of the perfect plasticity. Some
additional confirmations are presented for alloyed steel and
NaCl.¥ Saturation of the strain hardening is now generally
accepted in the severe plastic deformation community.®>%)

However, the results in Ref. 58) are much broader because
they include independence of the strain history and isotropic
behavior, which is exactly opposite to what was expected
from elastoplastic behavior. It is shown in Ref. 58) how to
develop an elastoplasticity theory that includes strain and
strain history dependence and plastic strain-induced aniso-
tropy, which disappear for monotonous and quasi-
monotonous loadings. This experimental regularity signifi-
cantly simplifies the theory and experimental calibration of
the specific models.

Note that the value of the threshold plastic strain for
disappearance of strain hardening, m, determined from high-
pressure-torsion experiments (which is in the range of m = 5
to 20 for copper), is highly overestimated®® because the
relationship between torque and anvil rotation angle is
weakly dependent on the value of m (Fig. 5). However,
relationship between torque and rotation angle is strongly
dependent on the Coulomb friction coefficient between the
flash and anvil. This was neglected in the interpretation of
experimental data because of the relatively small width of the
flash. For this reason, stress-strain curves extracted from
torque-rotation angle curves contain significant errors. Values
of m obtained in uniform compression for six metals®" range
from 0.44 for cast iron to 1.35 for low-carbon steel to 1.57 for
copper.

Analytical solutions for high-pressure torsion in uncon-
strained’*>> and constrained®® configurations are found to be
in good correspondence with FEM solutions in Refs. 63 and
62), respectively. There are numerous other FEM solutions
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Fig. 5 Relationship between the torque and number of revolutions of the
anvil for two critical strains for saturation of strain hardening, m = 4.8
and m = 1.57, obtained in Ref. 60), and the same relationship from the
experimental and FEM results in Ref. 9). It is clear that the results are
weakly dependent on the magnitude of m. Reproduced with permission
from Ref. 60).

for high-pressure torsion at relatively low pressure, e.g.%¢4-6%

These are based either on a Coulomb friction model or full
adhesion, which introduces some error in a solution. A
combined Coulomb friction and plastic sliding model, for
which the magnitude of the friction stress is equal to the yield
strength in shear, is utilized for high-pressure torsion of
copper®® and for plastic flow with PTs.®”:%%)

One argument in justifying the complete adhesion
condition in the recent works on high-pressure torsion is
due to surface roughness. However, even for complete
adhesion, localized shear flow in the thin layer of the
deformed materials just below the anvil’s asperities is
equivalent to the plastic sliding. Note that, even under
complete adhesion conditions, analytical’**> and numer-
ical®® solutions both exhibit plastic sliding. However, a very
fine mesh is needed to capture it. Therefore, introducing
plastic sliding conditions through the contact problem®”
minimizes this numerical error and allows one, in particular,
to better reproduce the experimental torque-rotation angle
curve.

In Ref. 69), the problem on compression of a rhenium
sample in diamond anvils was solved using FEM and based
on the developed large elastic and plastic strain elastoplastic
pressure-dependent model with nonlinear -elasticity. The
obtained pressure distribution is in good correspondence
with experiments for pressures up to 300 GPa.?? The same
elastoplastic model was used, with a more general contact
sliding rule, for torsion in rotational diamond anvils.”%"") A
pressure-self-focusing effect, consisting of a very large
pressure gradient and, consequently, high pressure in the
center of a diamond anvil with a beveled culet, was revealed.
Analysis led to suggestions on how to utilize the pressure
self-focusing to reach the maximum possible pressure in
traditional and rotational diamond anvils.

7.2 Modeling and simulation of plastic deformation and
strain-induced phase transformations

A macroscale phenomenological model for combined

plastic flow and strain-induced PTs, including microscale
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Fig. 6 Distributions of the pressure p and concentration ¢ of the w phase at
the contact surface between a zirconium sample and diamond anvil, in the
region 0 < < 100 pm, in the course of twisting under the fixed axial
force. Rotation angle of an anvil ¢ is expressed in radians. Reproduced
with permission from Ref. 72).

strain-controlled kinetics (described in Section 6), was
developed and applied for simulation of a sample compressed
and then twisted under constant load in rotational diamond
anvils. In the first series of papers,’2-33:67.68.72-77) the effect of
pressure on mechanical properties, finite elastic and trans-
formational deformations, as well as elastic nonlinearity were
neglected. Strain hardening was also neglected for reasons
summarized in Section 7.1. Full adhesion at the contact
surface between diamond and a sample was assumed in
Refs. 52, 53, 73-77); contact sliding utilizing combined
Coulomb and plastic friction was introduced in Refs. 17, 67,
68, 72). Here, we will present some recent simulations for
plastic strain-induced o — @ transformation in zirconium
under torsion in rotational diamond anvils. Fields of the
pressure p, concentration ¢ of the w phase, and plastic strain ¢
at the contact surface and in the bulk of the sample in the
course of twisting under the fixed applied force are presented
in Figs. 6 and 7. Note that the yield strength of the @ phase is
greater than that of the o phase by a factor of 5.56, according
to experiments.

During rotation of an anvil, PT occurs in the approximately
cylindrical region where p > p¢, which practically does not
grow. The growth of the pressure gradient in the transforming
region is caused by the increase in the yield strength of
mixture during PT progress, despite the constant applied
force and compressive volumetric transformation strain. Such
a pressure growth was first obtained experimentally for PT
in potassium chloride”!'? and fullerene'*?” and named the
“pressure self-multiplication effect”. While this effect
formally contradicts the principle of Le Shatelie, it in fact
does not because, as was previously mentioned, plastic strain-
induced PTs are described by more complicated thermody-
namics and kinetics. They are driven by plastic strain rather
than pressure, which should just exceed p?. Initially, within
an oversimplified elastic model, it was explained by an
increase in the elastic moduli during the PT.” However, more
adequate analytical plastic solutions?*?*>7? suggested that the
higher yield strength of the HPP and reduction in sample
thickness during torsion, compensating for transformational
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1 4.184  7.642
0.9167 3.902  7.005
0.8333  3.619 6.368
0.7500 3.336 5.731
0.6667  3.053 5.095
0.5833  2.771 4.458
0.5000 2.488 3.821
0.4167 2.205 3.184
03333 1.922 2547
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0.1667 1.357 1.274
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Fig. 7 Fields of the concentration ¢ of the w phase (a), mean pressure p (b),
and plastic strain ¢ (c) in the bulk of the sample under the same conditions
as in Fig. 6. The white line in Figure (a) corresponds to the minimum
pressure for the PT to HPP p? Reproduced with permission from
Ref. 72).

volume decrease, are responsible for this effect. This was
later confirmed by a much more detailed FEM solution.”

By increasing pressure during torsion, this effect increases
the driving force and promotes the PT. However, it is not very
practically useful for promotion of the PT due to pressure
growth in the region when it was high enough for completion
of PT at larger twisting. High pressure in the region where it
is not required increases the probability of fracture of anvils.
Such unwanted growth of pressure and pressure hetero-
geneity during PT can be reduced by using a gasket with
optimized geometric parameters and properties; see experi-
ments in Ref. 21) and simulation results in Refs. 68, 78).

It is clear from Fig. 7 that further rotation would not
essentially increase the amount of the w phase. Indeed, the
region with p > p¢ is almost fully occupied with the HPP
and the sample thickness decreases during torsion, pushing
the the w phase to the region with p < p?, where, in
principle, the w — o PT may take place. The only way to
increase the amount of the w phase is to apply a larger force,
increasing the region with p > p?. Note that finding material
in the region with p < pf (Fig. 7(a)) in an experiment may
lead to error in the determination of p¢ if one assumes that p?
is the lowest pressure where the @ phase is detected.

Strong pressure heterogeneity in Figs. 6 and 7 leads to the
conclusion that transformation pressure cannot be charac-
terized based on the averaged pressure (force over total area).
This was also mentioned for compression in Ref. 77).
However, all high-pressure torsion experiments'®!172) yse
the averaged pressure for this purpose. Based on FEM
results, such an averaged pressure should be corrected by a
factor of 2.2 for strain-induced o« — w transformation and by
a factor of 5 for strain-induced w — B transformation to
obtain a correct estimate for p?; see Ref. 72).

All previous limitations of the model in Refs. 52, 53, 67,
68, 72—77) were eliminated in Refs. 78, 79). A general model
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for coupled PT and plasticity with large plastic, transforma-
tional, and elastic deformations was developed. It includes
the same strain-controlled microscale kinetic equation, the
Murnaghan elastic rule, and pressure-dependent yield
strength. All elastic and plastic material constants are linear
functions of the volume fraction of HPP. A finite-strain,
anisotropic, and nonlinear single-crystal elastic rule was
utilized for diamond anvils. Strain-induced PT from graphite-
like to wurtzitic BN within a rhenium gasket was studied
under compression in traditional diamond anvils up to
50 GPa’® and under torsion in rotational diamond anvils.””
Cases of probable misinterpretation of the experimental
measurements and characterization of the strain-induced PTs
are analyzed. The obtained results offer a valuable insight
into combined PTs and plastic flow in various materials in
rotational diamond anvils, and are crucial for the planning of
an optimum experimental program and the calibration of
material parameters for PT, as well as for the control of PTs
by changing the geometric and mechanical parameters of a
gasket.

8. Summarizing Remarks

Four major experimental effects observed under torsion of
materials at fixed force in rotational Bridgman or diamond
anvils are the possibilities (a) to lower PT pressure by a factor
of 2 to 10 and more in comparison to compression under
quasi-hydrostatic conditions; (b) to obtain hidden (new)
metastable phases and compounds that have not been attained
under quasi-hydrostatic compression; (c) to retain metastable
high-pressure phases under normal pressure; and (d) to
reduce the pressure hysteresis, even to zero. Traditional
thermodynamics, even after substituting pressure and volume
with stress and strain tensors, cannot explain these effects.
This is related to the fact that the deviatoric stresses are
limited by the macroscopic yield strength and their
contribution to the driving force for the PT is much smaller
than the contribution from the pressure. Our goal is to collect
the results of our theory and simulations, at four scales from
atomistic to macroscale, and present our current under-
standing of the underlying phenomena. Atomistic simulations
using both classical and quantum mechanics provide critical
conditions for the initiation of PTs in a perfect lattice for the
general stress tensor. In particular, PT from Si I to Si II under
uniaxial compression starts at a pressure 21 times lower than
that under hydrostatic conditions.

A nanoscale mechanism of HPP nucleation at the tip of
plastic strain-induced dislocation pileups is suggested as the
most probable and is studied analytically and with developed
PFA for interaction between discrete dislocations and PT. The
magnitudes of all stress tensor components, including mean
pressure and stress deviator, are proportional to the number
of dislocations in a dislocation pileup and can be very large.
Note that the deviatoric stresses near the defect tip are not
bounded by the engineering yield strength but rather by the
ideal strength in shear for defect-free lattice, which may differ
by a factor of 10 to 100. Such huge local stresses, which
satisfy the PT criterion for a perfect lattice, may cause
nucleation of the HPP at an applied pressure not only
significantly below than that under hydrostatic loading but
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also lower than the phase-equilibrium pressure. The trans-
formation pressure can indeed be lowered by an order of
magnitude and more. In addition, such highly-deviatoric
stress states with large stress magnitudes cannot be realized
in bulk. Such unique stresses may lead to PTs into stable
or metastable phases that were not or could not be attained
in bulk under hydrostatic or quasi-hydrostatic conditions.
However, plasticity may also relax stresses at the tip of
defects, diminishing their nucleation potencies. Certain
combinations of pressure and shear stress for which the PT
is the dominant relaxation mechanism were established.

After careful experimental confirmation, the newly-
obtained understanding of the nanoscale mechanisms for
plastic strain-induced PTs may result in novel synthetic paths
and technologies for material synthesis of new materials at
the lowest possible pressure level. This understanding should
be supplemented by microscale and macroscale theoretical,
computational, and experimental approaches. They will
allow: (a) physically-based characterization of plastic strain-
induced PTs in terms of corresponding kinetic equations; (b)
collection of information about heterogeneity of all relevant
fields at these scales; (c¢) and optimal design of geometric and
mechanical parameters of a gasket to achieve the desired
local loading and transformation paths. After this, processes
in rotational diamond anvils can be scaled up using high-
pressure torsion with ceramic or metallic anvils.

For the material with a very strong effect of plastic strain
on PT (ie. for which p? < p’), our microscale kinetic
equation: (a) predicted a stationary two- or multiphase
solution and its independence of the loading history, which
was confirmed experimentally; and (b) explained the zero-
pressure hysteresis observed experimentally. Lack of hys-
teresis, however, does not mean that the phase-equilibrium
pressure is determined, because it can be obtained for any
pressure in the range p?¢ < p < p.

One goal of the synthesis of the metastable HPP is to retain
them at room pressure and utilize them for practical purposes.
Multiscale theory suggests the following ways to do this:
(a) to produce a complete PT to the HPP phase so that reverse
PT would require nucleation; (b) to plastically deform the
HPP above p!, pinning interfaces by dislocations, point
defects, grain boundaries, and other defects; (c) and to find
an unloading process of the sample in the anvils which
minimizes/eliminates plastic straining below p!, thus
minimizing/eliminating strain-induced reverse PT.
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