
ARTICLE OPEN

Tensorial stress−strain fields and large elastoplasticity
as well as friction in diamond anvil cell up to 400GPa
Valery I. Levitas 1,2*, Mehdi Kamrani3 and Biao Feng4

Various phenomena (fracture, phase transformations, and chemical reactions) studied under extreme pressures in diamond anvil
cell are strongly affected by fields of all components of stress and plastic strain tensors. However, they could not be measured. Here,
we suggest a coupled experimental−theoretical−computational approach that allowed us (using published experimental data) to
refine, calibrate, and verify models for elastoplastic behavior and contact friction for tungsten (W) and diamond up to 400 GPa and
reconstruct fields of all components of stress and large plastic strain tensors in W and diamond. Despite the generally accepted
strain-induced anisotropy, strain hardening, and path-dependent plasticity, here we showed that W after large plastic strains
behaves as isotropic and perfectly plastic with path-independent surface of perfect plasticity. Moreover, scale-independence of
elastoplastic properties is found even for such large field gradients. Obtained results open opportunities for quantitative extreme
stress science and reaching record high pressures.
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INTRODUCTION
In static high-pressure research, megabar pressures are generated
by compression of a thin sample by two diamonds in diamond
anvil cells (DAC)1–4; see Fig. 1. This process is accompanied by
large plastic deformation of a sample and large elastic deforma-
tion of the diamond.5,6 Various problems, such as the study of
physical, chemical, geological, and mechanical phenomena and
synthesis of new phases in a sample, as well as the increasing
range of achievable pressures,1–23 are related to knowledge of the
fields of all components of the stress, elastic, and plastic strain
tensors in DAC. While most measurements and discussions are
related to pressure only, it is evident that elastic deformation and
fracture of diamond and plastic flow of a sample and gasket
depend on all components of the stress tensor. Contact friction
between diamond and sample/gasket plays a key role in
generating high pressure without fracture of the diamond; friction
is a shear stress that depends on the stress normal to the contact
surface. It is also well-known that phase transformations and
chemical reactions in solids depend not only on pressure, but also
on the deviatoric stresses and plastic strains.12,14–16,20–23 All of
these fields are extremely complex and heterogeneous, e.g. with
normal stresses varying by megabar over 20 μm.6,7

Measurement of the radial pressure distribution at the sample-
diamond boundary was based on the ruby fluorescence method,
which worked up to 185 GPa.4 For higher pressure, radial pressure
distribution averaged over the sample thickness is determined
using X-ray diffraction in a sample.6,7 The radial thickness profile,
which characterizes both elastic deformation of an anvil and
elastoplastic deformation of a sample/gasket, was measured
utilizing in situ high-pressure X-ray absorption.6,7 Measurement
of the deviatoric stress was limited to the difference between axial
stresses σzz and radial stresses σrr averaged over the entire
sample.8,9,17–19 Plastic deformation fields in the sample com-
pressed in DAC and contact friction stresses were not measured at

all. Thus, despite significant progress, it is unlikely that all tensorial
fields in DAC will be measured. Theoretical approaches and finite
element method (FEM) simulations23–29 of the DAC are based on
relatively simple models with linear pressure dependence of the
yield strength and simplified contact friction conditions. The most
sophisticated model and the best numerical reproduction of the
experimental pressure distribution in ref. 5 was obtained in ref. 27

for compression of rhenium up to 285 GPa. However, in that study
the plastic sliding along the contact surface and also the
dependence of the friction coefficient on the normal contact
pressure were ignored. Also, good correspondence was obtained
for one pressure distribution only; for two smaller pressure levels,
significant deviation from the experiment existed, i.e. the model is
not adequate. To obtain such a description of the experiment, the
third-order elastic constants of diamond were modified. Besides,
since experimental thickness profiles of the sample were not
available, reproducing the pressure distributions was aimed only.
Thus, while essential improvement in reproducing pressure
distribution in comparison with the previous works26,27 was
achieved, obtained mechanical properties cannot be considered
as verified, and corresponding stress and plastic strain tensor
fields may contain significant inaccuracies.
We suggest the following coupled experimental−theoretical

−computational approach for determination of all stress and
plastic strain tensorial fields, elastoplastic properties, and contact
friction rules. All fields that can be measured should be measured.
Physics-based models for elastoplastic behavior and contact
friction should be iteratively developed and refined, and all
material properties should be calibrated by fitting to some
experimental fields and verified by comparison with other
experimental fields. With these properties, simulations provide
all fields, including components of the stress and plastic strain
tensors, friction stress, etc., i.e., those which cannot be directly
measured. To obtain the first results from this method, we will use
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the most advanced experimental data on compression of W in
DAC up to 400 GPa6 and slightly generalize our models for large
elastoplastic deformations and contact friction from.24,27

RESULTS AND DISCUSSION
Model
A complete system of equations for fourth-order elasticity of
diamond, large elastoplastic deformation of W, combined
Coulomb and plastic friction, geometry of DAC, formulation of
axisymmetric problem in cylindrical coordinates rzθ, and nonlinear
elastic properties are presented in the Methods section. It is
known that the yield surface in the six-dimensional space of
components of the stress tensor evolves during plastic deforma-
tion (Fig. 13), exhibiting strain hardening; this evolution depends
on the entire history of plastic strain, and material acquired
deformation-induced anisotropy.24,30 It was suggested in ref. 24 as
the postulate of the perfect plasticity that, above some level of
accumulated plastic strain q >m (q is defined in Eq. (11)) and for a
deformation path without sharp changes in directions (mono-
tonous deformation), the initially isotropic polycrystalline materials
are deformed as perfectly plastic and isotropic with a strain-
history-independent surface of the perfect plasticity (Fig. 13). This
statement means that (1) the strain hardening is saturated, and
that (2) strain-induced anisotropy and path dependence do not
exhibit themselves at monotonous loading. Some qualitative
arguments in favor of the postulate of the perfect plasticity have
been analyzed,24 but quantitative proof was not given for any
material. Here, we incorporated this postulate into our model and
will prove that such a model describes well experimental data. Our
model is based on the linear pressure dependence of the yield
strength in compression σy¼ σ0y þ ap with two material para-
meters, with no plastic strain or plastic strain path dependence.
Another hypothesis that will be proven is that despite the μm-
sized sample thickness and huge stress and plastic strain
gradients, i.e. conditions that require utilization of scale-
dependent and the gradient plasticity,31–33 much simpler local
plasticity provides adequate description of experiments.
Contact friction stress is determined either by the Coulomb law

τf ¼ τcf ¼ μðσcÞσc, where σc is the normal contact stress and μ is
the friction coefficient, or by the yield strength in shear τf ¼
τyðpÞ ¼ σyðpÞ=

ffiffiffi
3

p
(plastic friction), whichever is smaller. Sticking

occurs if the contact shear stress is smaller than these critical
values τf. All of our assumptions for the yield strength
(independence of plastic strain and its path) are also involved in
the assumption for plastic friction. The friction coefficient is usually
taken as a constant27 because no experimental data under high

pressure are available. We assume μ ¼ μ0 þ cσc with two material
parameters.
In addition, some of the third-order elastic constants of W and

fourth-order elastic constants of diamond, which are not well
defined from the literature, are refined by comparison with DAC
pressure and sample thickness distributions.
To summarize, in comparison with ref. 27, current model

includes fourth-order elasticity of diamond, combined Coulomb
and plastic contact sliding, and linear pressure dependence of the
Coulomb friction coefficient. Moreover, all unknown material
parameters are calibrated using one set of experimental data and
verified using another experimental set.

Results
All four material parameters in the pressure dependence of the
yield strength and friction coefficient were calibrated by minimiz-
ing the error between experimental and FEM results for pressure
distributions for two curves with maximum pressures pmax= 170
and 240 GPa (Fig. 2a). This led to

σy ¼ 1:8þ 0:1p; p � 225GPa μ ¼ 0:05þ 0:001σc; σc � 37GPa:

(1)

Unexpected strong limitations on pressure and contact stress
appear because we found in FEM solutions that Coulomb sliding
and plastic flow do not occur for σc > 37 GPa and p > 225 GPa,
respectively. With properties in Eq. (1), good correspondence is
obtained for two other pressure distributions with pmax= 300 and
400 GPa, with a maximum difference not exceeding 10% (Fig. 2a).
In addition, the profile of the sample after very large compression
and deformed anvil surface were reproduced for all four pressures,
with a maximum discrepancy smaller than 1 μm (Fig. 2b, c). Both
discrepancies are within error for an experiment under such
extreme conditions. As seen in Fig. 2, properties in Eq. (1) result in
having good agreement with experimental pressure distribution
not only at large pressures, but also at low pressures where the
error in the experimental results is assumed to be the least. The
achieved good agreement at lower pressures is missing in ref. 27.
Besides, thickness profiles are properly reproduced. The curves in
Fig. 2 are nontrivial, and coincidence demonstrates strong
verification of the entire model and the specific material proper-
ties from Eq. (1). It also proves the validity of the postulate of the
perfect plasticity for W, which was directly incorporated in our
model, and sufficiency of the local elastoplastic model even at
micron scale and with huge stress and plastic strain gradients. In
summary, elastoplasticity and, consequently, plastic friction under
such large strain and pressure is plastic strain-, plastic strain path-,
and scale-independent, which drastically simplifies theory and
measurements.
In addition, the higher-order elastic constants of W and

diamond, which have large scatter in literature (see the Methods
section), have been also refined/identified. Thus, we found the
third-order constants for W, m=−1081 and n=−1164 GPa, to
obtain a slightly better fit to the experimental pressure distribu-
tion curves for three lowest pressure. The fourth-order elastic
constant of diamond, C1112= 31,214, C1122= 20,044, and C1266=
819 GPa, were found from the best fit to the sample profile under
highest pressure only under constraint that they satisfy the known
equation of state of diamond; see the Methods section.
The suggested method has high throughput features, which

allows to determine ten material parameters using three pressure
and one sample thickness distributions.
Known5 pressure dependence of the yield strength for W has

huge scatter (Fig. 3), which is related to numerous assumptions for
the determination of σy(p) and to attribution of the dependence of
σy on plastic strain to the pressure dependency. In our curve, the
effect of plastic strain is excluded and the correctness of Eq. (1) is
confirmed by numerous data in Fig. 2.

Fig. 1 DAC scheme: Two diamond anvils compress a sample
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After proving its validity, the model is used for computational
reconstruction of all fields of interest. Distribution of shear friction
stress and normalized radial sample velocity along the diamond-
sample contact surface at different pressures is shown in Fig. 4a, b.
Such a complex profile of shear stresses and their evolution are
nontrivial and counterintuitive. In particular, shear stress in the
sticking zone makes several oscillations in a central cup region,
and the sticking zone grows with increasing compression. The
plastic friction zone is surprisingly narrow, which does not allow
use of the traditional method for determination of τyðpÞ based on
a pressure gradient.7,13,24 The maximum yield strength in shear
and corresponding p in the plastic sliding zone reduces from

5.85 GPa and 77.2 GPa for pmax= 164 GPa to 3.7 GPa and 44 GPa
for pmax= 380 GPa. The maximum shear stress in the Coulomb
sliding zone is 3.21 GPa, corresponding to σc= 37 GPa; for pmax=
380 GPa, it is 2 GPa, corresponding to σc= 26.2 GPa. An important
conclusion is that, due to significant increase in the sticking zone,
an increase in pmax does not lead to an increase in the maximum
range of σc and friction stress, either for Coulomb or plastic
friction. The only way to increase these ranges is to use torsion
under a fixed force in rotational DAC,12,15,22,34–36 for which FEM
simulations29,37 show that the sticking zone is localized near the
center.
The sample particles’ radial velocity along the diamond-sample

contact surface (Fig. 4b) is directed toward the center in the
sticking zone for any pressure, and is equal, by the definition of
sticking, to the velocity of the diamond contact particles. Outside
the sticking zone, sample particles move away from the center,
achieving maximum velocity at the edge of the culet. The
maximum velocity increases to pmax= 231 GPa, then reduces due
to the increasing sticking zone.
All relevant fields in the central part of the W sample at

maximum pressure of 300 GPa are presented in Fig. 5 on a quarter
of the sample, due to the symmetries. While axial stress σzz is
independent of the z coordinate, radial stress σrr visibly depends
on z and pressure p is, by definition, in between.
All components of plastic strain and q are very heterogeneous

and reach very large values. Plastic shear strain εrzp (defined in
Eq. (6)) changes sign three times in the central zone. Accumulated
plastic strain q reaches its maximum value at the contact surface,
especially where the thickness is smallest. Note that, for uniaxial
compression/tension, q reduces to the logarithmic strain, and
maximum q= 5.77 in Fig. 5c corresponds to the ratio of the initial-
to-final length of exp(5.77)= 321. With increasing radius, q
increases further. Material rotation in Fig. 5c, which leads to the
development of texture, is also very large, with a maximum of
46.8° in this region. Thus, if strain-induced anisotropy would be

Fig. 2 Calibration and verification of the model for DAC. a Radial distributions of pressure. b Corresponding sample thickness (anvil profile) in
experiment6 (dash lines) and FEM simulations (solid lines). c Zoomed sample thickness profile from (b) at the central region of the sample.
Dash-dot line in (a) shows the radius of the central region where the sample deforms elastically after initial plastic flow. Material functions in
Eq. (1) were determined from the best fit to two low-pressure curves in (a). Good correspondence with experiments for two high-pressure
curves in (a) and all four thickness curves after very large compressions in (b) and (c) provides strong and nontrivial verification of the model

Fig. 3 Pressure dependence of the yield strength after large plastic
deformation. Solid line is based on Eq. (1) obtained using
experimental data from ref. 6; symbols are from ref. 5 Large scatter-
in data from ref. 5 is related to multiple assumptions for the
determination of the yield strength and to attribution of the
dependence of σy on plastic strain to the pressure dependency
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present, isotropic flow theory would not describe experiments.
The rotation angle, similar to shear stress σrz, is zero at the
symmetry axis and plane and increases with increasing r and z.
Radial velocity (Fig. 5d) at such a pressure is directed toward the
center in the entire region. It is independent of z and its
magnitude increases with r. The rate of accumulated plastic strain
_q also increases with r, with zero region to the left of the white line
in Fig. 5d, where plastic flow stops and the material deforms
elastically. Evolution of the elastic zone with increasing pressure is
shown in Fig. 2a. It appears at pmax= 200 GPa and increases with
increasing pressure due to cupping of diamond.
Similar fields for three other maximum pressures, which we

used for calibration and verification of the model, are given in
Figs 6–8. For lower pressures, we present components of the
stress tensor and pressure only in Fig. 9.
In the maximum pressure range from 170 to 380 GPa, axial

stress σzz is independent of the z coordinate, radial stress σrr shows

visible dependence on z and pressure p is in between. Degree of
heterogeneity of σrr and p increases with reducing maximum
pressure because of more intense plastic flow. With further
maximum pressure reduction, σzz acquires some heterogeneity at
the center of the sample and around corner point between
beveled and initially flat central part. The heterogeneity of σzz is
quite pronounced in the entire central region for maximum
pressure in the range of 1 to 10 GPa, while below the beveled part
of the anvil σzz and even pressure is quite homogeneous along z
coordinate. Shear stresses have generally similar patterns for any
maximum pressure, governed by zero stress at the symmetry
plane and axis and increasing shear stress with increasing z and r.
In the pressure range from 1 to 10 GPa, maximum shear stress is
smaller than the yield strength in shear and either sticking or
Coulomb friction are involved. Due to increase in the yield
strength, maximum shear stress increases when maximum
pressure growth from 10 to 100 GPa, then it reduces due to the

Fig. 5 Stress, plastic strain, and rate fields for pmax= 300 GPa. a Fields of components of the stress tensor and pressure p, b plastic strain tensor
εp (defined in Eq. (6)), c accumulated plastic strain q, and particles’ rotation angle θ, and d normalized radial velocity vrr and _q in the central
part of a sample for r < 60 μm. See Methods section for definition of parameters. Scale of the thickness vs. length is multiplied by four here and
in all similar figures below

Fig. 4 Contact friction and velocities. a Distribution of shear friction stress and b normalized sample radial velocity along the diamond-sample
contact surface at various pressures. In (a), along each given curve, with reducing radius, i.e. from low to high pressure, the dashed portion
corresponds to the Coulomb friction τcf until shear stress reaches the yield strength in shear τyðpÞ (designated by squares). The dotted line
between squares and stars corresponds to the plastic sliding with τc ¼ τyðpÞ. The solid line τs between stars and center of the sample
corresponds to sticking between anvil and sample. Numbers near curves in (a) and (b) designate maximum pressure. Velocity is normalized by
maximum velocity at pmax = 231 GPa
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effect of significant cupping. Some cupping is first visible at
pmax= 50 GPa and is quite pronounced at pmax= 100 GPa.
Fields of plastic strain tensor εp, accumulated plastic strain q,

and particles’ rotation angle θ, as well as normalized radial velocity
vrr and _q have similar patterns for all maximum pressures in the
range from 170 to 380 GPa. However, region with elastic
deformations without plasticity at the center of the sample is
getting visible at pmax= 240 GPa and increases with further
loading.
All stress fields in the central part of the diamond for pmax=

300 GPa are presented in Fig. 10. All normal stresses have their
maximum at the center of the culet, with σmax

zz ¼ �321GPa and
σmax
rr ¼ σmax

θθ ¼ �260GPa, i.e. nonhydrostaticity is very high.
Maximum shear stress σmax

rz ¼ 37:5GPa is located away from the
culet. This value is significantly smaller than the theoretical shear

strength of 96.6 GPa at zero pressure, which grows with
pressure.36 It is important that the regions in which maximum
normal and shear stresses occur do not overlap.
The obtained fields of all components of the stress tensor are

the basis for the development of criteria for fracture of diamond.
To illustrate the concept, consider experimentally observed
fracture due to compression stress σ[110] along the [110] direction.
Theoretical strength for compression along the [110] direction
obtained in refs 38,39 using ab initio simulations can be approxi-
mated as σ½110�

th ¼ �471þ 1:64σbiðGPaÞ, where σbi is the averaged
biaxial normal stress in planes orthogonal to (110); in our case

σbi ¼ 0:5 σ½110� þ σθθ

h i
, where σ½110� is normal stress along the

½110�. The equivalent normalized stress in direction [110], plotted
in Fig. 10, is then σ

½110�
eq ¼ σ½110�=σ½110�

th , and fracture occurs at

Fig. 6 Stress, plastic strain, and rate fields for pmax = 376 GPa. a Fields of components of the stress tensor and pressure p, b plastic strain
tensor εp, c accumulated plastic strain q, and particles’ rotation angle θ, and d normalized radial velocity vrr and _q in the central part of a
sample for r < 60 μm

Fig. 7 Stress, plastic strain, and rate fields for pmax = 240 GPa. a Fields of components of the stress tensor and pressure p, b plastic strain
tensor εp, c accumulated plastic strain q, and particles’ rotation angle θ, and d normalized radial velocity vrr and _q in the central part of a
sample for r < 60 μm
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σ
½110�
eq ¼ 1. Since maximum σ

½110�
eq ¼ 0:32, there is still a significant

safety factor for ideal diamond along the [110] direction. For
complete fracture analysis, similar distributions should be
obtained for other possible fracture planes and shear stresses
along these planes should be also taken into account. This is the
key problem, the solution of which will allow optimization of the
design of anvils and loading conditions for a perfect crystal, which
will provide the upper bound of achievable pressure (stresses),
provided that plastic deformation in diamond does not occur.
Introducing defects into simulations will open the possibility of
developing the fracture mechanics and plasticity of real diamond
crystals under extreme stresses.
In summary, we suggested a novel coupled experimental

−theoretical−computational approach that allowed us (using
known experimental data from ref. 6) to extract complete
information about elastoplastic properties and friction rules, as
well as all complex tensorial fields for materials compressed in a
DAC under extreme pressure. In particular, we refined, calibrated,
and verified models for elastoplastic behavior of a sample and
contact friction for W up to 400 GPa and reconstruct fields of all
components of stress and large plastic strain tensors in W and
diamond. In addition to quantitative information on the pressure
dependence of the yield strength and friction, as well as higher-
order elastic constants, we justify some general unique properties
of elastoplastic behavior under very large strains and pressures:

(a) Despite the generally accepted strain-induced anisotropy,
strain hardening, and path-dependent plasticity, W after
large plastic strains behaves isotropically and does not
exhibit strain hardening and path dependence.

(b) Despite the μm-sized sample thickness and huge stress
(5 GPa/μm) and plastic strain gradients, scale-independence
of elastoplastic properties is found.

Both of these properties drastically simplify plasticity theory and
measurements under extreme conditions.

Our finding for plasticity also implies important properties for
plastic friction under such extreme loading: Plastic friction is
plastic strain-, plastic strain path-, and scale-independent.
Complex and counterintuitive profile of contact shear stresses

and their evolution are found. The plastic friction zone is
surprisingly narrow, which does not allow use of the traditional
method for determination of τyðpÞ based on a pressure
gradient.7,13,24 Despite the maximum pressure of 380 GPa,
plasticity and plastic sliding occur below 225 GPa, and Coulomb
friction takes place below 37 GPa only. Due to significant increase
in the sticking zone, an increase in pmax above 240–300 GPa leads
to decrease in the maximum range of pressure and contact stress
σc at which plastic flow, Coulomb or plastic friction occur. The only
way to increase these ranges for characterization of plastic flow
and contact friction is to use torsion under a fixed force in
rotational DAC,12,15,22,34–36 for which FEM simulations29,37 show
that the sticking zone is localized near the center.
The field of all components of the stress tensor in diamond are

the basis for the development of criteria for fracture of diamond.
We illustrated the concept by considering fracture due to
compression along one of the experimentally observed directions.
This is an important step which after detailed study of fracture of
anvil will allow optimization of the design of anvils and loading
conditions for further increase in achievable pressure.
The developed experimental−theoretical−computational

approach allows different realizations for different available
experimental data. In particular, recently developed nanoscale
sensing platform,40 which integrates nitrogen-vacancy color
centers directly into the culet of diamond anvils, allows
experimental determination of distribution of all six components
of the stress tensor in diamond along the flat culet, i.e., at the
contact surface with the sample. This information allowed us to
reconstruct nontrivial normal and shear contact stresses between
diamond and gasket and fields of all components of stress tensor
in the entire anvil. Since linear response is utilized, this method
was applied up to 30 GPa.

Fig. 8 Stress, plastic strain, and rate fields for pmax = 170 GPa. a Fields of components of the stress tensor and pressure p, b plastic strain
tensor εp, c accumulated plastic strain q, and particles’ rotation angle θ, and d normalized radial velocity vrr and _q in the central part of a
sample for r < 60 μm
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Note that W is used as a gasket material in DAC at megabar
pressures, i.e. obtained results have also applied importance for
study of various sample materials within W gasket. Knowledge of
the distributions of all (generally 12) components of stress and
plastic strain tensors in a sample will allow study of their (instead
of pressure alone) effect on phase transformations, chemical
reactions,12,14–16,20–22,34–37 and various physical properties. In
comparison with research under hydrostatic pressure, this will
add up to 11 new dimensions to the parametric space for studying
these processes, searching for new phases and materials,

drastically reducing the required pressure for synthesis of new
and known materials with unique properties, and understanding
processes in the deep interiors of the Earth and other planets.
Obtained results will also enable calibration and verification of
known and new methods for measurement of the components of
stress tensors in anvils and samples.

METHODS
A complete system of equations for fourth-order elasticity of diamond,
large elastoplastic deformation of W, and combined Coulomb and plastic

Fig. 9 Components of stress tensor and pressure for different maximum pressures. a pmax = 100 GPa, b pmax = 50 GPa, c pmax = 10 GPa,
d pmax = 5 GPa, e pmax = 1 GPa, in the central part of a sample for r < 60 μm
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friction, as well as problem formulation are presented in this section. Finite
element algorithm presented in ref. 27 was utilized for solution of all
boundary-value problems.

Geometry and boundary conditions
Axisymmetric problem formulation is considered. Due to symmetry of the
Mao-type DACs used in ref. 1, only the upper part of the DAC and sample
will be used in simulations. Geometry of the sample and the anvil, as well
as the boundary conditions, are shown in Fig. 11 and are as follows:

(1) A uniform vertical displacement is applied at the boundary between
the top inclined surface of the anvil and Boehler-type seat (line CD).
Distribution of stresses or displacements along this surface does not
affect fields close to the diamond culet (line AG).

(2) At the symmetry axis r= 0 (line AB), shear stress σrz and horizontal
displacements are zero. At the symmetry plane z= 0, shear stress σrz
and vertical displacement are zero.

(3) At the contact surface between the gasket and the anvil, a
combined Coulomb friction and plastic friction model, which is
described below, is utilized.

(4) Other surfaces not mentioned above are stress-free.

Finite element algorithms for solution of the boundary-value problems
are presented in Feng et al.28

Friction model
According to the combined Coulomb friction and plastic friction model,
there is complete cohesion between the contact pairs unless the shear
(friction) stress reaches the critical value:

τcrit ¼ min μ σcð Þσc; τy pð Þ� �
: (2)

When friction stress reaches τcrit, contact sliding occurs in the radial
direction. The critical shear stress τcrit ¼ μ σcð Þσc is related to the Coulomb
friction, where μ is the friction coefficient and σc is the normal contact
stress. However, the Coulomb friction stress cannot exceed the yield
strength in shear τy pð Þ, which is defined in terms of the yield strength
under compression, σy, by τy ¼ σy=

ffiffiffi
3

p
, based on the von Mises yield

criterion. Thus, plastic sliding occurs when the Coulomb friction exceeds
τy pð Þ. In fact, it represents plastic shear flow within a very thin material
layer immediately bellow the contact surface.
In this study the yield strength and the friction coefficient are assumed

to be pressure and contact pressure dependent, respectively.
We assume μ ¼ μ0 þ cσc with two material parameters, which after

calibration, looks like

μ ¼ 0:05þ 0:001σc; σc � 37GPa: (3)

Limitations on the contact stress exist because in FEM solutions,
Coulomb sliding does not occur for σc > 37 GPa, even for the highest
maximum pressure of 380 GPa.

Elastoplastic material model under large strains and high pressure
We designate single and double contractions of the second-order tensors
A¼ Aij

� �
and B¼ Bij

� �
over one and two indices as A � B¼ AijBjk

� �
and

A : B¼ AijBji
� �

, respectively. The subscript ‘s’ denotes symmetrization, and
the subscripts ‘e’ and ‘p’ denote elastic and plastic part of a tensor,
respectively. The superscripts −1 and ‘T’ designate the inverse and
transposition of a tensor. I is the second-order unit tensor.
The complete system of equations for a large elastoplastic deformation

of a sample is as follows:25,28

Decomposition of the deformation gradient F in to elastic Fe and plastic Fp
parts

F ¼ ∂r=∂r0 ¼ Fe � Fp ¼ Ve � Re � Up ¼ Ve � Vp � Re; (4)

where r and r0 are the position vectors of material points in the actual
(deformed) configuration and the reference (undeformed) configuration,
respectively; Ve and Vp are symmetric elastic and plastic left stretch
tensors, respectively, Up is the plastic right stretch tensor, and Re is the
proper orthogonal elastic rotation tensor.
Elastic strain Be and its Jaumann objective time derivative

Be ¼ 0:5 Fe � FTe � I
� �

; B
∇
e¼B

:

e � 2ðW � BeÞs: (5)

Fig. 10 Field of the components of the stress tensor, pressure, and equivalent stress σ½110�eq near the tip of a diamond anvil for r < 100 and z <
70 μm for pmax = 300 GPa

Fig. 11 a Mao-type DAC scheme and the geometric parameters of
the sample in the initial undeformed state. b Geometric parameters
of a quarter of the diamond anvil, and c the tip of the diamond anvil
in the initial undeformed state
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Plastic strain (plotted in Figs 5–8)

εp ¼ 1
2
R � Up � Up � I

� � � RT; (6)

Decomposition of the velocity gradient l, into symmetric deformation rate d
and skew symmetric spin w

l ¼ w þ d; d ¼ B
∇
e � 2ðd � BeÞs þ Ve � Dp � Ve; Dp ¼ Re � ð _Up � U�1

p Þs � RT
e;

(7)

where Dp is the plastic deformation rate.
Isotropic elasticity rule

σ ¼ J�1ð2Be þ IÞ � ∂Ψ
∂Be

: (8)

Here σ is the true Cauchy stress, J= def F is the Jacobian, and Ψ is the
specific Helmholtz free energy per unit undeformed volume.
Pressure-dependent yield surface (surface of perfect plasticity)

φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2ð Þs : s

p
� σy pð Þ ¼ 0; (9)

where s is the deviatoric part of Cauchy stress σ, and σy is the yield
strength in compression.
Plastic flow rule

Dp ¼ λs=
ffiffiffiffiffiffiffiffi
s : s

p
; (10)

where λ ≥ 0 is a scalar determined from the consistency condition _φ ¼ 0.
The rate of accumulated plastic strain (plotted in Figs 5–8)

_q ¼ 2Dp : Dp=3
� �0:5¼ ffiffiffiffiffiffiffiffi

2=3
p

λ; (11)

Equilibrium condition

= � σ ¼ 0; (12)

where ∇· is the divergence operator in the deformed configuration.
The yield strength in compression
We assume σy ¼ σ0y þ ap with two material parameters, which, after

calibration, results in

σy ¼ 1:8þ 0:1p; p � 225GPa: (13)

Limitation on the pressure exists because, in FEM solutions, plastic flow
does not occur for p > 225 GPa, despite the maximum pressure of 380 GPa.

Nonlinear isotropic elasticity for sample
The third-order nonlinear elastic Murnaghan potential is used:

Ψ Beð Þ ¼ λþ 2G
2

I21 � 2GI2 þ l þ 2m
3

I31 � 2mI1I2 þ nI3; (14)

where λ, G, l, m, n are material parameters and I1, I2, I3 are invariants of the
elastic strain tensor:

I1 ¼ traceðBeÞ; I2 ¼ Be22Be33 � B2e23 þ Be11Be33 � B2e13 þ Be22Be11 � B2e12; I3 ¼ detBe:

(15)

Furthermore, we have:

∂I1
∂Be

¼ I; ∂I2
∂Be

¼ �Be þ I1I;

∂I3
∂Be

¼
Be22Be33 � Be23Be32 Be23Be31 � Be33Be21 Be21Be32 � Be22Be31
Be23Be31 � Be33Be21 Be11Be33 � Be13Be31 Be12Be31 � Be11Be32
Be21Be32 � Be22Be31 Be12Be31 � Be11Be32 Be11Be22 � Be12Be21

2
64

3
75:
(16)

Therefore, according to the elasticity rule Eq. (8), the Cauchy stress can
be determined as:

σ ¼ J�1 2Be þ Ið Þ: λI1I þ 2GBe þ lI21 I þ 2mI1Be � 2mI2I þ n
∂I3
∂Be

	 

(17)

Nonlinear anisotropic elasticity for diamond
To study the finite elastic strains in diamond, a free energy which includes
the fourth-order terms of the Lagrangian strains Ee ¼ 0:5ðFTe:Fe � IÞ is

utilized as:41

Ψ ¼ 1
2C11 η21 þ η22 þ η23

� �þ C12 η1η2 þ η2η3 þ η1η3ð Þ þ 1
2C44 η24 þ η25 þ η26

� �
þ 1

6C111 η31 þ η32 þ η33
� �þ 1

2C112 η21 η2 þ η3ð Þ þ η22 η1 þ η3ð Þ þ η23 η1 þ η2ð Þ� �
þ C123η1η2η3 þ C456η4η5η6 þ 1

2C144 η1η
2
4 þ η2η

2
5 þ η3η

2
6

� �
þ 1

2C155 η24 η2 þ η3ð Þ þ η25 η1 þ η3ð Þ þ η26 η1 þ η2ð Þ� �
þ 1

24C1111 η41 þ η42 þ η43
� �þ 1

6C1112 η31 η2 þ η3ð Þ þ η32 η1 þ η3ð Þ þ η33 η1 þ η2ð Þ� �
þ 1

4C1122 η21η
2
4 þ η22η

2
5 þ η23η

2
6

� �þ C1123η1η2η3 η1 þ η2 þ η3ð Þ
þ 1

4C1155 η21 η26 þ η25
� �þ η22 η26 þ η24

� �þ η23 η25 þ η24
� �� �

þ 1
2C1255 η1η2 η24 þ η25

� �þ η3η2 η26 þ η25
� �þ η1η3 η26 þ η24

� �� �
þ 1

2C1266 η1η2η
2
6 þ η2η3η

2
4 þ η1η3η

2
5

� �þ C1456η4η5η6 η1 þ η2 þ η3ð Þ
þ 1

24C4444 η44 þ η45 þ η46
� �þ 1

4C4455 η24η
2
5 þ η26η

2
5 þ η24η

2
6

� �
;

(18)

where

η1 ¼ Ee11; η2 ¼ Ee22; η3 ¼ Ee33; η4 ¼ 2Ee23; η5 ¼ 2Ee31; η6 ¼ 2Ee12:

(19)

Therefore, based on the elasticity law, the Cauchy stress in the diamond
can be determined as:

σ ¼ 1
J
Fe:

∂ψ

∂Ee
:FTe: (20)

Material properties
Diamond. All elastic material constants are taken from Telichko et al.,42

which, to the authors’ knowledge, is the only reference that provides all
third- and fourth-order elastic constants for diamond. These were
determined using first principle simulations. Thus, we used the following
elastic constants in our simulations:

C11 ¼ 1081:9; C12 ¼ 125:2; C44 ¼ 578:6;

C111 ¼ �7611; C112 ¼ �1637; C123 ¼ 640; C144 ¼ �199; C166 ¼ �4000; C456 ¼ �1148;

C1111 ¼ 26; 687; C1112 ¼ 31; 214; C1122 ¼ 20; 044; C1123 ¼ �425; C1144 ¼ �1385; C1155 ¼ 10; 741;

C1255 ¼ �264; C1266 ¼ 819; C1456 ¼ 487; C4444 ¼ 11; 328; C4455 ¼ 528GPa:

(21)

Since available data for the third-order elastic constants from different
references have significant scatter,43–46 we assume that some of the
fourth-order elastic constants are not precise either. Indeed, for the elastic
constants from Telichko et al.,42 we were unable to obtain the
experimental equation of state collected in Maezono et al.47. Thus, we
changed C1112, C1122, and C1266 to the values indicated in Eq. (21) in order
to receive good correspondence with the equation of state from Sato
et al.48; see Fig. 12, and sample profile at highest pressure, see Fig. 2c.
A majority of equations of state of diamond determined by different

methods49,50 falls in between those from Sato et al.48 and McSkimin and
Andreatch51. Modifying the higher-order elastic properties of the diamond
is another advancement over ref. 27.

Fig. 12 Comparison of the equation of state for diamond from
refs 48,51,53 and with current data based on Eq. (18) with elastic
constants from Eq. (21)
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Tungsten. The elastic constants of the polycrystalline tungsten from
Vekilov et al.52 are used in this study, with some modifications:

λ ¼ 206:5; G ¼ 150:3; l ¼ �404; m ¼ �1; 081; n ¼ �1164GPa: (22)

The third-order constants m and n for polycrystal have been found from
the elastic constants for single crystal using the simplest Voight averaging
scheme. Thus, they may have significant indeterminacy. We changed n and
m to obtain a slightly better fit to the experimental pressure distribution
curves for three lowest pressure.
Geometric interpretation of the postulate of perfect plasticity is

presented in24 and Fig. 13.
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