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ABSTRACT
Severe plastic deformations under high pressure are used to produce nanostructured materials but
were studied ex-situ. Rough diamond anvils are introduced to reachmaximum friction equal to yield
strength in shear and the first in-situ study of the evolution of the pressure-dependent yield strength
and radial distribution of nanostructural parameters are performed for severely pre-deformed Zr. ω-
Zr behaves like perfectly plastic, isotropic, and strain-path-independent and reaches steady values of
the crystallite size and dislocation density, which are pressure-, strain- and strain-path-independent.
However, steady states for α-Zr obtained with smooth and rough anvils are different, causing major
challenge in plasticity theory.

IMPACT STATEMENT
In-situ study of severe plastic deformation ofω-Zrwith roughdiamond anvils revealed that pressure-
dependent yield strength, crystallite size, and dislocation density are getting steady and plastic
strain- and strain-path-independent.
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1. Introduction

Processes involving severe plastic deformations (SPD)
under high pressure are common in producing nanos-
tructuredmaterials [1–8], in functional materials experi-
encing extreme stresses under contact friction, collision,
and penetration, and in geophysics [9,10]. The effects
of SPD under high pressure on microstructure evolu-
tion aremostly studied with high-pressure torsion (HPT)
with metallic or ceramic anvils [1–4]. Stationary states
after SPD in terms of torque, hardness, grain size, and
dislocation density are well-known in literature, partic-
ularly after HPT, along with many cases where they
were not observed [1–8, 11]. However, all these results
were not observed in-situ but obtained postmortem after
pressure release and further treatment during sample
preparation for mechanical and structural studies (see
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supplementary material). The direct effect of pressure
and the combined effect of pressure and plastic strain-
ing on the yield strength, crystallite size, and disloca-
tion density were not determined. This is very impor-
tant because, as one will see, the yield strength of the
ω-Zr doubles at ∼13 GPa, but hardness and, conse-
quently, yield strength after pressure release are inde-
pendent of the pressure at HPT [12]. The only paper
[13] studies in situ the microstructure evolution in Ni
and amorphization and a reversemartensitic transforma-
tion in NiTi during HPT in a single peripheral region
(see details in supplementary material). During pres-
sure release after HPT of Ni, crystallite size increases,
and dislocation density decreases by a factor of 2 [13].
Similar results were obtained for Zr under hydrostatic
loading [14].
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Figure 1. Surface asperity profile of a smooth-DA and a rough-DA. (a) Traditional smooth-DA with an asperity profile range [−10 nm;
10 nm] and (b) rough-DA with range [−500 nm; 500 nm].

Robust method for measurement of the yield strength
in compression σy(p) under high pressure p is lack-
ing. The main difficulty in studying plasticity, structural
changes, and contact friction is that they depend on five
components of the plastic strain tensor εp and its entire
path ε

path
p , making an unspecifiable number of combi-

nations of independent parameters. The yield surface in
the 5D deviatoric stress s space f (s, εp, ε

path
p ) = σy(p)

depends on p, εp, and ε
path
p , demonstrating strain harden-

ing/softening and strain-induced anisotropy. This com-
plexity makes it impossible to determine the complete
evolution of the yield surface, even at small strains and
ambient condition. For measurement of yield strength at
high pressure, all methods [15–17] treat the yield surface
as f (s) = σy(p), i.e. like for perfectly plastic material (for
which the yield surface is independent of εp and ε

path
p ,

i.e. is fixed in the 5D stress space), and dependence on
εp and ε

path
p is neglected and merged in pressure, which

causes large error. One of the methods to determine the
yield strength in shear τy = σy/

√
3 in diamond anvil cell

(DAC) is based on applying the simplified equilibrium
equation dP̄

dr = − 2τf
h , assuming the anvil-sample contact

friction stress τf = τy [16–18] (see supplement). Here, P̄
is the pressure averaged over the sample current thick-
ness h. However, recent experiments [15, 19] show that
τf < τy. Coupled simulations and experiments demon-
strate that τf = τy only in a small region, even above
100 GPa [20]. Rough diamond anvil (rough-DA), whose
culet is roughly polished to increase friction (Figure 1),
is introduced. It is demonstrated that maximum friction
τf = τy is reached for rough-DA, which allowed us to
robustly determine σy(p) and plastic friction.

It was hypothesized in [18] that, above some level
of plastic strain in monotonous straining (straining

path without sharp changes in directions), the initially
isotropic polycrystalline materials deform as perfectly
plastic and isotropic with a strain path-independent sur-
face of the perfect plasticity ϕ(s) = σy(p) (Figure 2).
Some qualitative supportive arguments for the perfect
plastic behavior are presented in [18], but the quan-
titative experimental proof is lacking for any material.
Here, commercial Zr is severely pre-deformed by mul-
tiple rolling until saturation of its hardness. It is shown
that after the α-ω phase transformation, for four different
compression stages (i.e. for very different εp and ε

path
p ),

all pressure distributions of ω-Zr are described by single
function σy = 1.24 + (0.0965 ± 0.0016)p(GPa). This is
possible only if the material behaves like perfectly plastic,
isotropic, and independent of εp and ε

path
p . Similarly, fric-

tion stress τf = τy = 0.72 + (0.0557 ± 0.0009)p(GPa) is
also independent of εp and ε

path
p . The perfectly plas-

tic state is connected to reaching a steady nanostruc-
ture, determined here by in-situ synchrotron XRD in
terms of crystallite (grain) size d and dislocation den-
sity ρ, which do not change under successive plas-
tic straining. For rough-DA in α-Zr at the beginning
of α-ω phase transformation, dα is smaller, and ρα is
larger than those from smooth anvils, i.e. rough-DA
produces a different, more refined steady nanostructure.
The steady nanostructure for ω-Zr after phase transfor-
mation is the same for smooth and rough-DAs and is
pressure-independent.

2. Materials andmethods

The commercially pure (99.8%) α-Zr was heavily pre-
deformed to reach the saturation of its hardness. Any
method can be used; here, it is obtained by putting a Zr
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Figure 2. Evolving yield surface and fixed surface of perfect
plasticity. Schematic of the evolution of the yield surface
f (s, εp, ε

path
p ) = σy(p) until it reaches the fixed surface of per-

fect plasticity ϕ(s) = σy(p) in ‘5D’ space of deviatoric stresses s
at fixed p. The initial yield surface and ϕ(s) = σy(p) are isotropic

(circles). Two other yield surfaces depend on εp and ε
path
p , and

acquire strain-induced anisotropy, namely shifted centers O1 and
O2 (back stress) and ellipsoidal shape due to texture. When
the yield surface reaches ϕ(s) = σy(p), the material deforms
like perfectly plastic, isotropic with the fixed surface of perfect
plasticity.

slab with an initial thickness of 5.25 mm into a rolling
machine and rolling it 7 times to the thicknesses 3, 2, 1,
0.54, 0.3, 0.206, and 0.163mm. 3mmdiameter disks were
punched out for compression in DAC with rough-DAs,
and smooth-DAs for comparison. The pressure distri-
bution is determined using measured lattice parameters
through 3rd-order Birch–Murnaghan equation of state
from [19]. Samples were compressed gradually up to
∼14-15 GPa at the culet center. In-situ synchrotron XRD
in axial diffraction geometry were performed at 16-BM-
Dbeamline atHPCAT atAdvanced Photon Sourcewith a
wavelength of 0.3100 Å and recorded with Perkin Elmer
detector. The measurements were performed along two
perpendicular culet diameters (230 μm) in 10 μm steps.
The sample current thickness (see Table S1) was mea-
sured through x-ray intensity absorption using the lin-
ear attenuation equation [19]. The diffraction images
were converted to unrolled patterns using FIT2D soft-
ware [21] and then analyzed through Rietveld refinement
using MAUD software [22] to obtain the lattice param-
eters, volume fractions of ω-Zr, microstrains, crystallite
sizes, and dislocation density [23] (see supplementary
material).

3. Results and discussion

It is assumed and then proved that after SPD and phase
transformation, the initially isotropic polycrystalline Zr
deforms as perfectly plastic and isotropic with a strain
path-independent surface of the perfect plasticity ϕ(s) =
σy(p) (Figure 2). To determine the pressure dependence
of the yield strength of ω-Zr, the pressure distribution
of fully transformed region can be used only, i.e. region
around culet center of 3 GPa step and the whole diame-
ters after 3 GPa step. Assuming vonMises yield condition
with σy = σ 0

y + bp, and considering non-hydrostatic
stress and heterogeneity along thickness, the equilibrium
equation averaged over thickness is advanced to (see
supplementary material):

dP̄
dr

= −A
σ 0
y + bP̄
h

→ P̄

=
(
P0 + σ 0

y

b

)
exp

(
−A b

r − r0
h

)
− σ 0

y

b
;

A = 2(1 + 0.524b)√
3(1 − 0.262b)

, (1)

where P0 is the pressure at point r0. From Equation (1),

σy(P̄) = −Ah
dP̄
dr

= −A
dP̄

d
( r
h
) . (2)

The pressure distributions are plotted vs. r/h in Figure 3.
To extract the yield strength utilizing data at all
compression steps and positions, pressure distribu-
tions from different compression stages are shifted
horizontally to the same position. Figure 3 shows
that for four different compression stages all pres-
sure distributions overlap with each other and are
described by Equation (1) with single pressure depen-
dence σy = 1.24 + (0.0965 ± 0.0016)p(GPa). Note that
σ 0
y = 1.24GPa is converted from the hardness of ω-Zr

from [24],HV = 3.72 GPa, based on the known relation-
ship σ 0

y = HV/3, proving that τy is reached with rough-
DA. Finite element simulations of the processes in DAC
[20, 25, 26] and Figure S1 demonstrate that for differ-
ent material positions and compression stages, εp, ε

path
p ,

and material rotations vary substantially. Consequently,
the ability to describe all four curves with single func-
tion σy(p) demonstrates strict proof, for the first time,
that for the monotonous loading with rough-DAs, ω-Zr
deforms as perfectly plastic and isotropicmaterial with εp

and ε
path
p -independent surface of perfect plasticity. Since

εp and ε
path
p are the only reasons for the strain-induced

anisotropy, independence of the yield surface of them
implies isotropy also from the theory. Similar, friction
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Figure 3. Pressure in single-phase ω-Zr vs. r/h. Solid lines cor-
respond to Equation (1) for σ 0

y = 1.24GPa and b = 0.0965.
Equation (1) is not valid around the culet center due to reduction
in friction stress to zero at the symmetry axis. Dashed line shows
the positionwhere data is truncated. The unified curve for all load-
ings (necessary for using data from all four compression stages
as a single data set) is obtained by shifting each curve (which is
allowed by differential Equation (1)) along the horizontal axis by
distance shown in parentheses. Note that uncertainty of pressure
as well as crystallite size and dislocation density in the following
are smaller than the symbols.

stress τf = τy = σy√
3

= 0.72 + (0.0557 ± 0.0009)p(GPa)

is also independent of εp and ε
path
p .

The perfectly plastic behavior is connectedwith reach-
ing steady nanostructure. After completing phase trans-
formation in the whole sample, crystallite size dω for 6,
10, and 14 GPa steps scatters between 40 and 60 nm,
being practically independent of radius (Figure 4(a)).
Dislocation density ρω = (1.04 ± 0.19) × 1015m−2 is
also practically independent of radius (Figure 4(b)). Since
εp, ε

path
p , and p strongly vary with radius and increasing

load, this indicates that steady nanostructure, which is
independent of pressure, εp, and ε

path
p , is reached. Using

the general equation for the yield strength as a combina-
tion of the Taylor contribution due to dislocation density
and Hall-Petch contribution due to grain size [27], one
obtains:

σ̄y = σ̃y(p) + αρ0.5 + βd−0.5. (3)

Eq. (3) shows consistency between steady states in σ̄y, ρ,
and d.

Pressure-independence of the steady microstructure
is consistent with pressure-independence of hardness
for single-phase Zr for p < 4 GPa and 6 < p < 40 GPa
[12], Ti for p < 4 GPa and 20 < p < 40 GPa [28], and Fe
for p < 7 GPa and 28 < p < 40 GPa [11]. After HPT of
Ni, at the periphery (where the steady state is reached)
0.17 ≤ d ≤ 0.2microns for 3 < p < 9 GPa [2, 29], which

is within an error and is consistent with the pressure-
independent hardness for 2 < p < 40 GPa [11]. Larger
grain size for 1 GPa may be related to not reaching a
steady state due to smaller friction and plastic strain.
Pressure-independent grain size was reached in V [30],
Hf, Pt, Ag, Au, Al, Cu, and Cu-30%Zn [11]. The supple-
mentary material gives some rationales for the pressure
independence of the grain size for ω-Zr and difference
between known ex-situ and the current in-situ rules.
Pressure in single-phase α-Zr is too low to claim pressure
independence.

For ω-Zr, with smooth and rough-DA, the steady
ρω = (0.95 ± 0.05) × 1015m−2 and (1.04 ± 0.19) ×
1015m−2, respectively, and dω = 49 ± 1 nm and 47 ±
6 nm, respectively, are practically the same. A completely
different situation is with α-Zr, which has three steady
states:

1. Aftermultiple rolling at ambient pressure, withρα =
(1.00 ± 0.02) × 1015m−2 and dα = 75 ± 1 nm.

2. After deformation with smooth anvils, just before
initiation of the α-ω phase transformation at 1.36
GPa, with ρα = (1.26 ± 0.07) × 1015m−2 and dα =
65 ± 1 nm.

3. After deformation with rough-DA, just before ini-
tiation of the α-ω transformation at 0.67 GPa,
with ρα = (1.83 ± 0.03) × 1015m−2 and dα = 48 ±
2 nm.

The reason for different steady states cannot be related
to the different pressures only because its effect is non-
monotonous within a small pressure range. The results
about the existence ofmultiple steady states are consistent
with known results that different ways to produce SPD
(e.g. HPT, equal-channel angular pressing (ECAP), etc.)
lead to different steady grain sizes [1–3, 31].However, dif-
ferent steady dislocation density and crystallite sizemean
different yield strengths σ i

y(p) (which could not be deter-
mined robustly due to the small number of experimental
points for single-phaseα-Zr) and surfaces of perfect plas-
ticity ϕi(s) = σ i

y(p) (Figure 5). Each of these states was
obtained at quite different plastic strain and strain paths,
so each of them supposed to be independent of εp and
ε
path
p . But if this is true, how can steady ρ, d, and σ i

y(p)
be different, and which of these steady values should be
used in plasticity theory? Thus, the existence of multi-
ple steady states leads to the formulation of a new major
challenge in the plasticity and microstructure evolution
theories: for which classes of εp and ε

path
p and may be

pressure path,material behaves along each of the surfaces
ϕi(s) = σ i

y(p) with corresponding steady ρ and d, and
for which loading classes the material behavior jumps
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Figure 5. Evolving yield surface and several fixed surfaces of per-
fect plasticity. Part of the schematic with the internal fixed sur-
face of perfect plasticity ϕ1(s) = σ 1

y (p) in ‘5D’ space of deviatoric
stresses s at fixedp coincideswith that in Figure 2. Thedifference is
in the presence of several other fixed surfaces of perfect plasticity
ϕ i(s) = σ i

y(p)with larger yield strengths σ i
y(p).

from one surface to another with different steady ρ and
d? When this problem is resolved, one will be able to
explain why different SPD technologies lead to different
steady ρ and d[1–3, 31], and how to design the loading
paths to reduce the ρ, and increase d and strength. One
of the potential reasons for different steady states may be
related to the qualitatively different character of the plas-
tic flow, like transition from the laminar to hierarchical
turbulent flow at different scales with different degrees of
complexity [32–34].

Importantly, obtained findings are formulated in the
language of plasticity theory (plastic strain and strain
path tensors, yield surface, etc.) instead of technological
language, which allows one to use the obtained knowl-
edge to significantly enrich fundamental plasticity and
the formulation and application of plastic models to var-
ious processes. In addition, to increase the maximum
possible pressure in DAC, toroidal grooves are used [35],
which increase friction [18]. This can be done with
rough-DAs more uniformly throughout the culet and
with smaller stress concentrators.

4. Concluding remarks

In this paper, the first in-situ study of the rules of dislo-
cation density, crystallite size, yield surface, and contact
friction under high pressure and SPD is presented. In par-
ticular, after some critical plastic strain,ω-Zr behaves like
perfectly plastic and isotropic, with fixed plastic strain
and the strain-path-independent surface of the perfect
plasticity ϕ(s) = σy(p). The perfectly plastic behavior is
connected to another rule: crystallite size and dislocation
density ofα andω-Zr are getting p (only forω-Zr), εp and
ε
path
p -independent and reach steady values. To provide

a robust method to determine σy(p) and plastic friction
stress, rough-DA with increased height of asperities is
introduced here, for which maximum friction τf = τy is
reached.

Three different steady states are obtained forα-Zr after
multiple rolling and with smooth and rough-DAs, all
are independent of εp and ε

path
p .This leads to the new

key problem in plasticity theory: for which classes of εp,
ε
path
p , and maybe pressure path material behaves along

Figure 4. Radial distribution of the crystallite size (a) and dislocation density (b) inω-Zr for three loading steps after full transformation.
Since εp, ε

path
p , and p strongly vary with radius and increasing load, approximate independence of dω and ρω of radius and load indicates

that steady nanostructure in terms of crystallite size and dislocation density, which is independent of pressure, εp, and ε
path
p , is reached.
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each of the surfaces ϕi(s) = σ i
y(p) and for which load-

ing classes the material behavior jumps from one surface
to another? Solution to this problem will allow one to
explain why different SPD technologies lead to differ-
ent steady grain sizes and dislocation densities and how
to design the loading paths to reduce the grain size and
increase dislocation density and strength.

Obtained results suggest a more economical way to
produce the desired steady nanostructure. Instead of SPD
at high pressure, e.g. by HPT, one can reach one of the
steady nanostructures by SPD at normal pressure (e.g. by
rolling or ECAP) and then reach steady nanostructure
with smaller grain size at relatively small plastic strain
and low pressure by compression without or with HPT.
Since there is a significant reduction in dislocation den-
sity and an increase in the crystallite size during pressure
reduction [13], the in-situ study shows the potential for
further improvement of themicrostructure andmay help
to find an unloading path combined with torsion at low
pressures to minimize or eliminate this effect (see also
supplementary material). Utilizing rough-DAs in a rota-
tional DAC [36–38] will allow in-situ studies of HPT.
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Supplementary Methods 

 

1. Evaluation of the yield strength under high pressure 

 

Pressure dependence of the yield strength is of great interest to many disciplines for 

various reasons. It determines:  

(a) strength of structural elements working under extreme loads, in particular, different 

high-pressure apparatuses, including DAC, rotational DAC, and apparatuses with metallic or 

ceramic dies for high-pressure torsion;  

(b) the maximum pressure that can be achieved in materials compressed in DAC (see 

Equation (1));  

(c) material flow in different technologies, like high-pressure material synthesis, 

extrusion, forging, cutting, polishing, and ball milling;  

(d) maximum possible friction in heavily loaded contacts and related wear;  

(e) the level of shear (deviatoric) stresses that can be applied to materials. The shear 

stresses drastically affect the phase transformations, chemical reactions, and other structural 

changes [1, 19, 24, 36-40];  

(f) plastic flow and geodynamic processes in Earth and other planets, including 

earthquakes. 

There are two approaches to estimate yield strength under pressure in a DAC-like 

device, which exploit x-ray diffraction in either radial or axial diffraction geometry. With 

radial diffraction geometry, the yield strength in compression can be estimated from the 

lattice strains (distortion of crystal lattice planes) measured by synchrotron x-ray diffraction. 

Since the compression direction is perpendicular to the x-ray beam, lattice strains are 

detectable because axial compression symmetry and diffraction symmetry do not coincide. 

With this method, all the components of the elastic strain tensor in single crystals comprising 

polycrystalline samples can be determined. Combined with high-pressure single-crystal 

elastic constants, lattice strains can be used to estimate yield strength with proper mechanical 

assumptions [41]. Despite obtaining a large amount of experimental information and broad 

usage, this method suffers from several disadvantages:  

(a) All measurements are averaged over the diameter of the sample, and the radial 

gradient of strain and stress fields is unavoidable due to contact friction. The macroscopic 

stress state also includes shear stresses, which are not included in the treatment. To reduce the 
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effect of friction, a relatively small ratio of the sample diameter to thickness 𝑑𝑑/ℎ needs to be 

used, which also limits the axial displacement and applied plastic strain. 

(b) When estimating yield strength from the lattice strains, different chosen 

mechanical assumptions to determine effective elastic properties of the polycrystalline 

aggregate (Reuss, Voigt, Hill, self-consistent, etc.) leads to different results.  

(c) For multiphase materials, lattice strains give an estimation of stress in a single 

phase only. The mixture theory for the yield strength of multiphase material is not well 

developed, especially for the large difference in the yield strength of phases [42, 43].  

(d) Yield strength depends on the pressure, plastic strain, and grain size that evolve 

during deformation. By presenting the yield strength versus pressure, all these effects are 

prescribed to the pressure only, which introduces large errors.  

With axial diffraction geometry, yield strength is estimated using radial pressure 

gradient and sample thickness based on the simplified mechanical equilibrium equation in 

radial direction r [16-18], combined with the assumption that the friction stress reaches the 

yield strength in shear 𝜏𝜏𝑦𝑦: 

                                                               𝑑𝑑𝑝̅𝑝
𝑑𝑑𝑑𝑑

= −2𝜏𝜏𝑦𝑦(𝑝𝑝)

ℎ
 ,                                                         (S1) 

where 𝑝̅𝑝 is the pressure, averaged over the sample thickness. Previously, the pressure was 

measured at the surface using the ruby fluorescence method, and thickness was measured on 

recovered samples after unloading. Currently, pressure 𝑝̅𝑝 can be measured using x-ray 

diffraction and thickness using x-ray absorption. The advantage of Equation (S1) is that it 

does not include constitutive equations and assumptions, making it available for multiphase 

material. Disadvantages are:  

(a) Due to the low friction coefficient of the diamond, the friction stress is much lower 

than the yield strength in shear 𝜏𝜏𝑦𝑦. It is found here that for smooth anvils up to 15 GPa, the 

ratio 𝜏𝜏𝑓𝑓/𝜏𝜏𝑦𝑦 = 0.39 − 0.46  away from the center characterizes underestimate in the 𝜎𝜎𝑦𝑦(𝑝𝑝) in 

previous works [16-18]. This is the reason why this method significantly underestimates the 

yield strength.  

(b) Stress 𝝈𝝈 and strain 𝜺𝜺𝑝𝑝 tensor fields are strongly heterogeneous along the radius, 

and material undergoes very different plastic straining path 𝜺𝜺𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝ℎ at different positions. Since 

the yield strength depends on pressure, 𝜺𝜺𝑝𝑝, and 𝜺𝜺𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝ℎ, but is presented as a function of 

pressure only, this also introduces large errors.  

(c) Equation (S1) neglects heterogeneity along the thickness and difference between 

pressure and normal stresses. 
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In the following part, all the above drawbacks are eliminated, and the mechanical 

equilibrium Equation (S1) is advanced to Equation (1) from the main text, which considers 

the heterogeneity of all stresses across the sample thickness. 

 

2. Derivation of the advanced averaged equilibrium equation 

 

 Problem formulation. For compression of a sample in the DAC, 𝜎𝜎33, 𝜎𝜎11, and 𝜎𝜎22 are 

the normal stress components along the load (vertical), radial, and azimuthal directions, 

respectively; 𝜏𝜏31 is the shear stress; 𝜎𝜎𝑦𝑦 and 𝜏𝜏𝑦𝑦 are the yield strength in compression and shear 

respectively. Compressive stresses are negative. Pressure is defined as: 

                                                        𝑝𝑝 = −(𝜎𝜎11 + 𝜎𝜎22 + 𝜎𝜎33)/3 .                                          (S2) 

All stresses and pressure are functions of 𝑟𝑟 and 2𝑧𝑧/ℎ in a cylinder coordinate system with the 

origin at the center of the sample cylinder, where ℎ is the sample thickness; in particular, 𝑝𝑝(0) 

corresponds to the symmetry plane 𝑧𝑧 = 0 and 𝑝𝑝(1) corresponds to the contact surface 2𝑧𝑧/ℎ =

1. Pressure (or any stress), averaged over the sample thickness, is defined as: 

                                                                 𝑝̅𝑝 = 1
ℎ ∫ 𝑝𝑝ℎ0 𝑑𝑑𝑑𝑑.                                                        (S3) 

The contact friction stress 𝜏𝜏𝑓𝑓 is defined by the simplified mechanical equilibrium equation.  

                                                               𝑑𝑑𝜎𝜎�11
𝑑𝑑𝑑𝑑

= −2𝜏𝜏𝑓𝑓�𝑝𝑝(1)�
ℎ

  .                                                 (S4)      

The pressure-dependent yield strength in compression 𝜎𝜎𝑦𝑦 and shear 𝜏𝜏𝑦𝑦 = 𝜎𝜎𝑦𝑦/√3 (based on the 

von Mises equivalent stress) are: 

𝜎𝜎𝑦𝑦 = 𝜎𝜎𝑦𝑦0 + 𝑏𝑏𝑏𝑏;  𝜏𝜏𝑦𝑦 = 𝜎𝜎𝑦𝑦/√3 = �𝜎𝜎𝑦𝑦0 + 𝑏𝑏𝑏𝑏�/√3 .                      (S5) 

Note that 𝜎𝜎𝑦𝑦 depends on the local pressure 𝑝𝑝. At the contact surface, symmetry plane, and for 

averaged over the thickness, one has different pressures and yield strengths:  

                     𝜎𝜎𝑦𝑦(1) = 𝜎𝜎𝑦𝑦0 + 𝑏𝑏𝑏𝑏(1);   𝜎𝜎𝑦𝑦(0) = 𝜎𝜎𝑦𝑦0 + 𝑏𝑏𝑏𝑏(0);     𝜎𝜎�𝑦𝑦 = 𝜎𝜎𝑦𝑦0 + 𝑏𝑏𝑝̅𝑝 .                 (S6) 

     𝜏𝜏𝑦𝑦(1) = �𝜎𝜎𝑦𝑦0 + 𝑏𝑏𝑏𝑏(1)� /√3; 𝜏𝜏𝑦𝑦(0) = �𝜎𝜎𝑦𝑦0 + 𝑏𝑏𝑏𝑏(0)� /√3; 𝜏𝜏̅𝑦𝑦 = �𝜎𝜎𝑦𝑦0 + 𝑏𝑏𝑝̅𝑝�/√3 . 

 

For maximum possible friction provided by the rough-DA, one has: 

                                  𝜏𝜏𝑓𝑓�𝑝𝑝(1)� = 𝜏𝜏𝑦𝑦(1) = 1
√3
𝜎𝜎𝑦𝑦(1) = 1

√3
�𝜎𝜎𝑦𝑦0 + 𝑏𝑏𝑏𝑏(1)� .                          (S7) 

With expression in Equation (S7), the equilibrium Equation (S4) specifies as: 

                                             𝑑𝑑𝜎𝜎�11
𝑑𝑑𝑑𝑑

= − 2
√3

𝜎𝜎𝑦𝑦(1)

ℎ
= − 2

√3
𝜎𝜎𝑦𝑦0+𝑏𝑏𝑏𝑏(1)

ℎ
 .                                            (S8) 
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Since in XRD experiments the distribution of pressure 𝑝̅𝑝(𝑟𝑟) averaged over the thickness is 

measured, one needs to express 𝜎𝜎�11 and 𝑝𝑝(1) in Equation (S11) in terms of 𝑝̅𝑝(𝑟𝑟). 

Traditionally, this difference is neglected, i.e., it is assumed 𝜎𝜎�11 = 𝑝𝑝(1) = 𝑝̅𝑝(𝑟𝑟), which 

introduces errors.  

 Analytical evaluation of the stress and pressure fields. It is assumed that the material 

behaves as perfectly plastic and isotropic macroscopically, with the surface of perfect 

plasticity 𝜑𝜑(𝒔𝒔) = 𝜎𝜎𝑦𝑦(𝑝𝑝) in the 5D deviatoric stress tensor s space. This surface is independent 

of the plastic strain tensor 𝜺𝜺𝑝𝑝 and its path 𝜺𝜺𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝ℎ. Such behavior can be achieved after large 

enough preliminary plastic deformation leading to saturation of hardness [18]. The pressure-

dependent von Mises yield condition (i.e., Drucker-Prager yield condition) is assumed: 

 

𝜑𝜑(𝒔𝒔) = 1
√2
�(𝜎𝜎11 − 𝜎𝜎22)2 + (𝜎𝜎11 − 𝜎𝜎33)2 + (𝜎𝜎22 − 𝜎𝜎33)2 + 6𝜏𝜏132 = 𝜎𝜎𝑦𝑦(𝑝𝑝) = √3𝜏𝜏𝑦𝑦(𝑝𝑝). (S9)    

 

Equilibrium equations are: 

 
∂𝜎𝜎11
∂𝑟𝑟

+ ∂𝜏𝜏13
∂𝑧𝑧

+ 𝜎𝜎11−𝜎𝜎22
𝑟𝑟

= 0;                                          (S10)  

 ∂𝜎𝜎33
∂𝑧𝑧

+ ∂𝜏𝜏13
∂𝑟𝑟

+ 𝜏𝜏13
𝑟𝑟

= 0.                                                 (S11)                                                                                                     

 

The following assumptions are made: 

(a) It approximately follows from the finite element method simulations and DAC 

experiments: 𝜎𝜎11 = 𝜎𝜎22. Then plasticity condition Equation (S9) simplifies to: 

(𝜎𝜎11 − 𝜎𝜎33)2 + 3𝜏𝜏312 = 𝜎𝜎𝑦𝑦2(𝑝𝑝) = 3𝜏𝜏𝑦𝑦2(𝑝𝑝).                   (S12)                                                 

(b) Stress 𝜎𝜎33 is independent of 𝑧𝑧. However, it does not mean that: 

 ∂𝜏𝜏13
∂𝑟𝑟

+ 𝜏𝜏13
𝑟𝑟

= 0  →  𝜏𝜏13 = 𝜏𝜏0(𝑧𝑧) 𝑟𝑟0
𝑟𝑟

 .                              (S13)                                      

because at the contact surface, 𝜏𝜏0(𝑧𝑧) may equal constant 𝜎𝜎𝑦𝑦 for all 𝑟𝑟 for material with 

pressure-independent yield strength. 𝜎𝜎33 that is independent of 𝑧𝑧 means two other terms in 

Equation (S11) make small contributions to 𝜎𝜎33. 

For plane strain, when the term 𝜏𝜏13
𝑟𝑟

 in Equation (S11) is absent, a slightly modified 

Prandtl's solution for the maximum possible contact friction [44] for stresses that satisfy 

equilibrium equations and plasticity conditions are: 
𝜎𝜎33(𝑟𝑟)

𝜏𝜏𝑦𝑦
= 𝜎𝜎33(0)

𝜏𝜏𝑦𝑦
+ 2𝑟𝑟

ℎ  ;                                                  (S14) 
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𝜏𝜏13
𝜏𝜏𝑦𝑦

= 2𝑧𝑧
ℎ  ;                                                          (S15) 

                                                                                                                                        

                    𝜎𝜎11
𝜏𝜏𝑦𝑦

= 𝜎𝜎33(0)
𝜏𝜏𝑦𝑦

+ 2𝑟𝑟
ℎ

+ √3�1 − �2𝑧𝑧
ℎ
�
2

= 𝜎𝜎33(𝑟𝑟)
𝜏𝜏𝑦𝑦

+ √3�1 − �2𝑧𝑧
ℎ
�
2
;               (S16) 

                                 𝑝𝑝
𝜏𝜏𝑦𝑦

= −2𝜎𝜎11+𝜎𝜎33
3𝜏𝜏𝑦𝑦

= −𝜎𝜎33(𝑟𝑟)
𝜏𝜏𝑦𝑦

− 2
3√3�1 − �2𝑧𝑧

ℎ
�
2
 .                          (S17)           

The difference with Prandtl's solution is in multiplier √3 instead of 2 in Equation (S16) for 

𝜎𝜎11. The reason is that the von Mises condition and 𝜎𝜎11 = 𝜎𝜎22 are used, which results in 

Equation (S12), while in Prandtl's solution, the Tresca condition along with plane strain 

assumption leads to the yield condition (𝜎𝜎11 − 𝜎𝜎33)2 + 4𝜏𝜏312 = 𝜎𝜎𝑦𝑦2 = 4𝜏𝜏𝑦𝑦2. 

Equation (S16) and Equation (S17) lead to the relationship: 

                                                          𝜎𝜎11
𝜏𝜏𝑦𝑦

= − 𝑝𝑝
𝜏𝜏𝑦𝑦

+ √3
3
�1 − �2𝑧𝑧

ℎ
�
2
 .                                            (S18) 

Stress 𝜎𝜎�11 and pressure 𝑝̅𝑝, averaged over the sample thickness are 

                               𝜎𝜎�11 
𝜏𝜏𝑦𝑦(𝑝̅𝑝) = 1

ℎ ∫
𝜎𝜎11
𝜏𝜏𝑦𝑦

ℎ
0 𝑑𝑑𝑑𝑑 = 𝜎𝜎33(0)

𝜏𝜏𝑦𝑦(𝑝̅𝑝) + 2𝑟𝑟
ℎ

+ √3𝜋𝜋
4

= 𝜎𝜎33
𝜏𝜏𝑦𝑦(𝑝̅𝑝) + √3𝜋𝜋

4  ;                        (S19) 

                                    𝑝̅𝑝
𝜏𝜏𝑦𝑦(𝑝̅𝑝) = − 𝜎𝜎33

𝜏𝜏𝑦𝑦(𝑝̅𝑝) −
√3𝜋𝜋
6

 .                           (S20) 

It is assumed that 𝜏𝜏𝑦𝑦 is constant during averaging and then substituted in the result 𝜏𝜏𝑦𝑦(𝑝̅𝑝). It is 

possible to avoid this assumption, but the final equations are getting too bulky and unusable 

analytically for our purposes. Note that the averaged value of 𝜎𝜎�11 is much closer to the value 

of 𝜎𝜎11(2𝑧𝑧/ℎ) at the symmetry plane 𝜎𝜎11(0) than at the contact surface 𝜎𝜎11(1). For example, 

(𝜎𝜎11(0) − 𝜎𝜎33)/�√3𝜏𝜏𝑦𝑦� = 1, 𝜎𝜎11(1) − 𝜎𝜎33 = 0, and (𝜎𝜎�11 − 𝜎𝜎33)/�√3𝜏𝜏𝑦𝑦� = 0.79. Similar, 

(𝑝𝑝(0) + 𝜎𝜎33)/�2𝜏𝜏𝑦𝑦/√3� = −1, 𝑝𝑝(1) + 𝜎𝜎33 = 0, and (𝑝̅𝑝 + 𝜎𝜎33)/�2𝜏𝜏𝑦𝑦/√3� = −0.79. 

Equation (S19) and Equation (S20) lead to the relationship: 
𝜎𝜎�11
𝜏𝜏𝑦𝑦(𝑝̅𝑝) = − 𝑝̅𝑝

𝜏𝜏𝑦𝑦(𝑝̅𝑝) + √3𝜋𝜋
12

 .                                                   (S21) 

The aim is to find the relationship between 𝜎𝜎�11, 𝜎𝜎11(0), and 𝜎𝜎11(1). The following identity 

will be used: 

  𝜎𝜎�11 = 𝜎𝜎11(1)𝑤𝑤 + 𝜎𝜎11(0)(1 − 𝑤𝑤);  𝑤𝑤 : = 𝜎𝜎�11−𝜎𝜎11(0)
𝜎𝜎11(1)−𝜎𝜎11(0) .                  (S22) 

Where 𝑤𝑤 is treated as the weight factor. Utilizing Equation (S16) and Equation (S19), one 

obtains: 

𝑤𝑤 = 1 − 𝜋𝜋
4

𝜎𝜎𝑦𝑦(𝑝̅𝑝)

𝜎𝜎𝑦𝑦�𝑝𝑝(0)�
= 1 − 𝜋𝜋

4
𝜎𝜎𝑦𝑦0+𝑏𝑏𝑝̅𝑝

𝜎𝜎𝑦𝑦0+𝑏𝑏𝑏𝑏(0) .                                       (S23) 

Similar, 
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𝑝̅𝑝 = 𝑝𝑝(1)𝑤𝑤 + 𝑝𝑝(0)(1 − 𝑤𝑤);  𝑤𝑤 = 𝑝̅𝑝−𝑝𝑝(0)
𝑝𝑝(1)−𝑝𝑝(0) .                            (S24) 

Here the same symbol 𝑤𝑤 is used because, from Equation (S17) and Equation (S20), it has the 

same expression (Equation (S23)) as for 𝜎𝜎11. Also, one obtains from Equation (S16) and 

Equation (S18): 

𝜎𝜎11(1) = −𝑝𝑝(1) = 𝜎𝜎33; 𝜎𝜎11(0) = −𝑝𝑝(0) + √3
3
𝜏𝜏𝑦𝑦�𝑝𝑝(0)� = −𝑝𝑝(0) + 1

3
𝜎𝜎𝑦𝑦�𝑝𝑝(0)�;   (S25) 

from Equation (S17): 

𝑝𝑝(0) = −𝜎𝜎33 − 1.155𝜏𝜏𝑦𝑦�𝑝𝑝(0)� = −𝜎𝜎33 − 0.667𝜎𝜎𝑦𝑦�𝑝𝑝(0)� = 𝑝𝑝(1) − 0.667𝜎𝜎𝑦𝑦�𝑝𝑝(0)�; (S26) 

from Equation (S21): 

𝜎𝜎�11 = −𝑝̅𝑝 + 0.453𝜏𝜏𝑦𝑦(𝑝̅𝑝) = −𝑝̅𝑝 + 0.262𝜎𝜎𝑦𝑦(𝑝̅𝑝) = 0.262𝜎𝜎𝑦𝑦0 + 𝑝̅𝑝(0.262𝑏𝑏 − 1).         (S27) 

Elaborating Equation (S26) with allowing for Equation (S6): 

𝑝𝑝(0) = 𝑝𝑝(1) − 0.667𝜎𝜎𝑦𝑦�𝑝𝑝(0)� = 𝑝𝑝(1) − 0.667�𝜎𝜎𝑦𝑦0 + 𝑏𝑏𝑏𝑏(0)� → 𝑝𝑝(0) = 𝑝𝑝(1)−0.667𝜎𝜎𝑦𝑦0

1+0.667𝑏𝑏
 .   (S28) 

Substitution of Equation (S28) in Equation (S23) and Equation (S24) results in: 

𝑝̅𝑝 = 𝑝𝑝(1)𝑤𝑤 + 𝑝𝑝(1)−0.667𝜎𝜎𝑦𝑦0

1+0.667𝑏𝑏
(1 − 𝑤𝑤);  𝑤𝑤 = 1 − (0.785 + 0.524𝑏𝑏) 𝜎𝜎𝑦𝑦0+𝑏𝑏𝑝̅𝑝

𝜎𝜎𝑦𝑦0+𝑏𝑏𝑏𝑏(1) .       (S29) 

Resolving linear equations Equation (S29) for 𝑤𝑤 and 𝑝𝑝(1), one obtains: 

𝑤𝑤 = 0.411
1.910+𝑏𝑏

 ;                                                           (S30) 

 

𝑝𝑝(1) = 0.524𝜎𝜎𝑦𝑦0 + (1 + 0.524𝑏𝑏)𝑝̅𝑝.                                      (S31) 

Substituting in Equation (S6) for 𝜎𝜎𝑦𝑦(1) in Equation (S31), one obtains: 

𝜎𝜎𝑦𝑦(1) = 𝜎𝜎𝑦𝑦0 + 𝑏𝑏𝑏𝑏(1) = �𝜎𝜎𝑦𝑦0 + 𝑏𝑏𝑝̅𝑝�(1 + 0.524𝑏𝑏)                             (S32) 

Substituting Equation (S27) and Equation (S32) in Equation (S8) results in the final 

equilibrium equation for parameters 𝜎𝜎𝑦𝑦0 and 𝑏𝑏 from the best fit to experiments: 

𝑑𝑑𝑝̅𝑝
𝑑𝑑𝑑𝑑

= − 2
√3
 1+0.524𝑏𝑏
1−0.262𝑏𝑏

 𝜎𝜎𝑦𝑦
0+𝑏𝑏𝑝̅𝑝
ℎ

 .                                            (S33) 

Equation (S33) is the final mechanical equilibrium equation expressed in terms of measured 

pressure 𝑝̅𝑝 averaged of the sample thickness, which is used as Equation (1) in the main text to 

determine the pressure dependence of the yield strength. It transforms to the known Equation 

[16-18] for 𝑏𝑏 = 0 only. To use data from all four compression stages as a single data set, one 

must justify a way to combine all data in a single plot. Equation (S33) and its solution in 

Equation (1) in the main text have the following properties:  

(a) Pressure distribution depends on the dimensionless geometric parameter 𝑟𝑟/ℎ rather 

than on 𝑟𝑟 and ℎ separately.  
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(b) Pressure distribution curves for different applied forces and compression can be 

overlapped by shifting curves along the 𝑟𝑟-axis without changing 𝜎𝜎𝑦𝑦(𝑝𝑝), since change 𝑟𝑟 → 𝑟𝑟 +

𝐶𝐶 does not violate Equation (S33). Indeed, one can choose the same 𝑝𝑝0 for all curves and 

choose constant 𝐶𝐶 for each curve such that 𝑟𝑟+𝐶𝐶
ℎ

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡 is the same for all curves.  

These properties are used in Figure 3 in the main text. Practically, one can choose a 

fixed (𝑝𝑝𝑓𝑓,  𝑟𝑟𝑓𝑓) point in the 𝑝𝑝 − 𝑟𝑟/ℎ plane for all curves to pass through. Then the curve that 

originally passes through the point (𝑝𝑝𝑓𝑓,  𝑟𝑟𝑖𝑖), should be shifted in the positive direction by the 

distance (𝑟𝑟𝑓𝑓 − 𝑟𝑟𝑖𝑖)/ℎ, so that the new curve passes through (𝑝𝑝𝑓𝑓,  𝑟𝑟𝑓𝑓). Then all the points in the 

shifted curve in Figure 3 are used to find the best fit for Equation (S33) (or Equation (1) in the 

main text).  

 

3. Dislocation density estimation 

The crystallite sizes and microstrains extracted from the refinement using MAUD were used 

to estimate the dislocation density. Dislocation density can be expressed as [23]: 

                                                             𝜌𝜌 = �𝜌𝜌𝑐𝑐𝜌𝜌𝑚𝑚𝑚𝑚 .                                                       (S34)  

where 𝜌𝜌𝑐𝑐 and 𝜌𝜌𝑚𝑚𝑚𝑚 are the contribution to overall dislocation density from crystallite size and 

microstrain, respectively. Contribution from crystallite size is:  

                                                             𝜌𝜌𝑐𝑐 = 3
𝑑𝑑2

 .                                                           (S35) 

Where d is crystallite size. Contribution from the microstrain is determined by the Equation: 

                                                             𝜌𝜌𝑚𝑚𝑚𝑚 = 𝑘𝑘𝜀𝜀2/𝑏𝑏2.                                                     (S36) 

Where 𝜀𝜀 is the microstrain; 𝑏𝑏 is the magnitude of the Burgers vector; 𝑘𝑘 = 6𝜋𝜋𝜋𝜋( 𝐸𝐸
𝐺𝐺 ln (𝑟𝑟/𝑟𝑟0)

) is a 

material constant; 𝐸𝐸 and 𝐺𝐺 are Young’s modulus and shear modulus, respectively; 𝐴𝐴 is a 

constant that lies between 2 and 𝜋𝜋/2 based on the distribution of strain; 𝑟𝑟 is the radius of 

crystallite with dislocation; 𝑟𝑟0 is a chosen integration limit for dislocation core. In this study, 

𝐴𝐴 = 𝜋𝜋/2 is the gaussian distribution of strain. Moduli 𝐸𝐸, 𝐺𝐺 and their pressure dependence for 

ω-Zr are taken from [45], respectively. A reasonable value of ln (𝑟𝑟/𝑟𝑟0) being 4 is used [23].  

α-Zr has a dominant prismatic slip system of {11�00}〈112�0〉 [46-49]. For ω-Zr, a prismatic 

{112�0}〈11�00〉 and basal {0001}〈11�00〉 dominant slip system is suggested based on plasticity 

modeling [50]. Since the crystal lattice gets compressed under pressure, the length of the 

Burger vector is calculated using pressure-dependent lattice constants. It is worth noting that 

when estimating dislocation density using the Williamson-Smallman method, only one 

dominant dislocation slip system is considered. However, to accommodate arbitrarily 
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imposing plastic strain on polycrystals, auxiliary slip systems are usually needed. With 

changing orientation of grains during deformation, the Schmid factor of slip systems changes, 

and thus slip system activities, which is the percentage of plastic strain accommodated by 

certain slip systems, will be different. This may induce uncertainty in dislocation density 

estimation. Note that nanocrystals usually do not have a cell structure because cell boundaries 

are transformed into grain boundaries [4, 51]. That is why the crystallite size is equal to the 

grain size. 

 

4. Some additional experimental details  

The material in this study is commercially pure (99.8%) α-Zr (Fe: 330 ppm; Mn: 27 ppm; Hf: 

452 ppm; S: <550 ppm; Nd: <500 ppm). Zr is chosen as the first test material since Zr and its 

alloy are widely used in the aerospace, military, medical, and nuclear industries experiencing 

potential high-pressure environments. The sample thickness during compression (see Table 

S1) was measured through x-ray intensity absorption using the linear attenuation equation 

with density corrected to the corresponding pressure, similar to [19].  

 

Table S1. The thickness of Zr sample compressed with rough-DAs at corresponding 

compression steps marked by the peak pressure at the culet center.  

Compression step initial 3 GPa 6 GPa 10 GPa 14 GPa 

Thickness (µm) 163 48 40 32 26 

 

 

Supplementary Discussion 

 

1. Scatter in crystallite size and dislocation density in ω-Zr after completing phase 

transformation 

 

While the crystallite size and the dislocation density in ω-Zr after completing the phase 

transformation are independent of the radius (Figure 4), there are some scatters around the 

average along the radius. Also, the dislocation densities vary slightly between 6, 10, and 14 

GPa steps. These scatters cannot be attributed to the dependence of the crystallite size and 

dislocation density on pressure, plastic strain, and strain path. Indeed, pressure strongly and 

monotonously reduces, plastic strain strongly and monotonously increases along the radius, 
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and the plastic strain path also changes monotonically. However, there is no clear radial 

dependence of the crystallite size and the dislocation density. Because of the large fluctuation, 

the slight difference in the average dislocation density between 6, 10, and 14 GPa steps also 

cannot be solely attributed to the growing pressure and plastic strain. A possibility is that the 

observed fluctuations in the crystallite size and the dislocation density after phase 

transformation completed are due to evolving texture (i.e., dynamically changing distribution 

of crystallographic orientations and uncharacterized preferred orientations) during the plastic 

deformation with increasing pressure and errors in post-processing of XRD patterns as 

described in dislocation density estimation section. 

 

2. The rationale for pressure-independence of the steady grain size 

2.1. Main equations 

The existence of steady values of the grain size, dislocation density, and hardness 

(yield strength) and the parameters they affect are discussed in reviews [1-8]. While pressure 

dependence of the grain size was not quantitatively analyzed in the literature, some models 

and correlations are used for the steady grain size at normal pressure. For example, in [52], 

the following equation is derived: 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏

= 𝐴𝐴3 exp �− 𝛽𝛽𝛽𝛽
4𝑅𝑅𝑅𝑅

� �𝐷𝐷𝑃𝑃𝑃𝑃𝐺𝐺𝑏𝑏
2

𝜈𝜈𝑜𝑜𝑘𝑘𝑘𝑘
�
0.25

� 𝛾𝛾
𝐺𝐺𝐺𝐺
�
0.5
�𝐺𝐺
𝜎𝜎
�
1.25

,                        (S37) 

where b is the magnitude of Burgers vector, 𝐴𝐴3 and 𝛽𝛽 are constants,  𝑄𝑄 is the self-diffusion 

activation energy, R is the gas constant, k is Boltzmann’s constant,  T is the absolute 

temperature, 𝐷𝐷𝑃𝑃𝑃𝑃 is the frequency factor for pipe diffusion, G is the shear modulus, 𝜈𝜈𝑜𝑜 is the 

initial dislocation velocity, 𝛾𝛾 is the stacking fault energy,  𝜎𝜎 = 𝐻𝐻𝐻𝐻/3 is the normal stress, and 

HV is the hardness. Equation (S37) was further transformed in [53] to:  

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏

= 𝐴𝐴3 exp �− 𝛽𝛽𝛽𝛽𝛽𝛽
4𝑇𝑇𝑚𝑚

� �𝐷𝐷𝑃𝑃𝑃𝑃𝐺𝐺𝑏𝑏
2

𝜈𝜈𝑜𝑜𝑘𝑘𝑘𝑘
�
0.25

� 𝛾𝛾
𝐺𝐺𝐺𝐺
�
0.5
�𝐺𝐺
𝜎𝜎
�
1.25

,                       (S38) 

where 𝑇𝑇𝑚𝑚 is the melting temperature, 𝛽𝛽 = 0.037, 𝜆𝜆 = 17.5 .  There are also some different 

simpler relationships in terms of steady hardness 𝐻𝐻𝐻𝐻, like: 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝐺𝐺

𝑏𝑏
= 𝐴𝐴 � 𝐺𝐺

𝐻𝐻𝐻𝐻
�
𝑚𝑚

                                                    (S39) 

with m=1.667 in [53] and m=1.25 in [52], and in terms of stacking fault energy 𝛾𝛾, like 
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝛾𝛾

𝑏𝑏
= 𝐶𝐶 � 𝛾𝛾

𝐺𝐺𝐺𝐺
�
𝑞𝑞
                                                      (S40) 

with q=0.5 in [52], q=0.4 in [53], and q= 0.653 for HPT and q=0.696 for equal channel 

angular pressing in [54]. Besides, a relationship in terms of melting temperature is provided in 

[52, 53]: 
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𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑚𝑚

𝑏𝑏
= 3818 exp(−0.00056𝑇𝑇𝑚𝑚).                                      (S41) 

Note that there is a clear difference between the steady grain size obtained by HPT and 

processes at normal pressure, like ECAP, which is attributed to the reduction of the minimum 

grain size with pressure. This is probably related to damage that occurs at low pressure during 

plastic deformation and stress release, which are not taken into account in the following 

analysis. Alternatively, or in addition, monotonous straining produces finer grain than the 

cyclic [3]. For monotonous straining during HPT, larger grain size for low pressure (e.g., for 

Ni for 1 GPa [2, 29]) may be related to not reaching a steady state due to smaller friction and 

plastic strain. To be safe, it is assumed that the following analysis of direct effects of pressure 

is applicable above some critical pressure, similar to obtained data for ω-Zr. There are many 

other parameters that are not taken into account. In particular, the effect of the deformation 

with the smooth and rough diamond anvils still cannot be explained.    

A linear pressure dependence of grain size is assumed: 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
0 (1 − 𝑎𝑎𝑎𝑎),                                             (S42)  

where 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
0  is the grain size at 0 GPa and a is small in comparison with the unity coefficient. 

It will be shown in the following evaluations that the pressure-induced reduction in the grain 

size does not exceed uncertainty in the current grain size measurement 6/47 = 0.13 over a 

pressure range from 6 to 14 GPa, corresponding to the value of 𝑎𝑎 within:  

−0.0163 ≤ −0.13
8
≤ 𝑎𝑎 ≤ 0.13

8
= 0.0163  (GPa−1).                      (S43) 

Such a pressure dependence of the grain size is undetectable with the performed in-situ 

synchrotron XRD measurements. 

 

2.2. Pressure dependence of the main material parameters affecting steady grain size 

To analyze the pressure dependence of the grain size, a linear pressure dependence of any 

material property C is also assumed: 

𝐶𝐶 = 𝐶𝐶0(1 − 𝐴𝐴𝐴𝐴),                                               (S44) 

where p is the pressure, 𝐶𝐶0 is the property at p=0, and A is small compared to the unity 

coefficient. First, one needs to collect the pressure dependence of the main properties of ω-Zr 

that affect it. 

Yield strength from this study: 

𝜎𝜎𝑦𝑦 = 1.24 + 0.0965𝑝𝑝 = 1.24(1 + 0.0778𝑝𝑝).                        (S45) 

Shear modulus from [26]: 

𝐺𝐺 = 45.1(1 + 0.0132𝑝𝑝).                                          (S46) 
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Bulk modulus from [14] 

𝐾𝐾 = 102.4(1 + 0.0286𝑝𝑝).                                         (S47) 

Magnitude of the Burgers vector: 

𝑏𝑏 = 𝑏𝑏0 �1 − 𝑝𝑝
3𝐾𝐾
�~𝑏𝑏0(1 − 0.0033𝑝𝑝).                                 (S48) 

Melting temperature from [55]: 

𝑇𝑇𝑚𝑚 = 2125(1 + 0.0094𝑝𝑝).                                         (S49) 

Stacking fault energy (SFE) affects steady grain size, particularly in terms of the 

combination of twinning and dislocation mechanisms of plasticity. The lower stacking fault 

energy is the higher contribution of twinning to plastic flow. Significant twinning is observed 

in α-Zr [47, 49]. It is known that a reduction in grain size suppresses twinning [56]. We are 

not aware of works reporting twinning in nanocrystalline ω-Zr. Papers [50, 57] quantitatively 

reproduce experimentally observed in [50] texture by combining different slip modes only. 

That is why the minimum grain size for ω-Zr may depend on the SFE for reasons other than 

twinning, like grain size recovery, dislocation absorption by grain boundaries, and dislocation 

climbing [53].  

Let us estimate the pressure-dependence of the SFE by analyzing parameter 𝑎𝑎𝑠𝑠𝑠𝑠 in 𝛾𝛾 =

𝛾𝛾0�1 + 𝑎𝑎𝑠𝑠𝑠𝑠𝑝𝑝�. Since data on the pressure dependence of the SFE for Zr or any other simple 

hexagonal metal are unknown, available data for 9 fcc metals in [58] for the intrinsic stacking 

faults will be used. Data for the energy of the extrinsic stacking faults are quite similar. 

Results are collected in Table S2. The largest 𝑎𝑎𝑠𝑠𝑠𝑠 = 0.071 GPa−1 is for Ag, which has the 

smallest 𝛾𝛾0 = 16.9 mJ/m2, then 𝑎𝑎𝑠𝑠𝑠𝑠 = 0.024 GPa−1 for Au with 𝛾𝛾0 = 32.6 mJ/m2. For all 

other 7 metals with larger 𝛾𝛾0, 𝑎𝑎𝑠𝑠𝑠𝑠 varies between 0.0077 and 0.0186 GPa-1. For 3 other fcc 

metals, Ca, Sr, and Pb, 𝛾𝛾 is getting negative with pressure, i.e., 𝑎𝑎𝑠𝑠𝑠𝑠 < 0. Note that in [59], for 

Ag 𝛾𝛾 = 27.3(1 − 0.09𝑝𝑝) mJ/m2 and for Cu, it is 𝛾𝛾 = 47.3(1 − 0.01𝑝𝑝) mJ/m2 in the 

pressure range −4 GPa ≤ 𝑝𝑝 ≤ 4 GPa, i.e., 𝑎𝑎𝑠𝑠𝑠𝑠 < 0 and is close in magnitude to the positive 

values in [58]. Based on the above results, one assumes 𝑎𝑎𝑠𝑠𝑠𝑠 = 0.01 for omega Zr, i.e., 

𝛾𝛾 = 𝛾𝛾0 (1 + 0.01𝑝𝑝).                                             (S50) 

2.3. Evaluating the pressure dependence of the grain size 

While evaluating the effect of pressure in Eqs. (S37)-(S41), the linear approximation 

in the Taylor series is utilized, e.g., 
(1+𝑏𝑏𝑏𝑏)(1+𝑐𝑐𝑐𝑐)𝑛𝑛

(1+𝑘𝑘𝑘𝑘)(1+𝑚𝑚𝑚𝑚)𝑞𝑞
≈ 1 + (𝑏𝑏 − 𝑘𝑘 + 𝑐𝑐𝑐𝑐 − 𝑚𝑚𝑚𝑚)𝑝𝑝;                               (S51) 

exp�−𝐴𝐴(1 + 𝑎𝑎𝑎𝑎)� ≈ exp(−𝐴𝐴)(1 − 𝑎𝑎𝑎𝑎𝑎𝑎);                               (S52) 



  

13 
 

exp�−𝐴𝐴(1 + 𝑎𝑎𝑎𝑎)� (1+𝑏𝑏𝑏𝑏)(1+𝑐𝑐𝑐𝑐)𝑛𝑛

(1+𝑘𝑘𝑘𝑘)(1+𝑚𝑚𝑚𝑚)𝑞𝑞
≈ 𝑒𝑒−𝐴𝐴(1 + (−𝑎𝑎𝑎𝑎 + 𝑏𝑏 − 𝑘𝑘 + 𝑐𝑐𝑐𝑐 − 𝑚𝑚𝑚𝑚)𝑝𝑝.        (S53) 

Let us start with Eq. (S40). Using pressure dependence of SFE, G and b, one obtains: 

                                              � 𝛾𝛾
𝐺𝐺𝐺𝐺
�
𝑞𝑞
≈ � 𝛾𝛾0

𝐺𝐺0𝑏𝑏0
�
𝑞𝑞

(1 + 0.0001𝑞𝑞𝑞𝑞);                                (S54) 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝛾𝛾 = 𝑏𝑏 � 𝛾𝛾

𝐺𝐺𝐺𝐺
�
𝑞𝑞
≈ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

0 (1 + (0.0001𝑞𝑞 − 0.0033)𝑝𝑝).                     (S55) 

Thus, for any q accepted in the literature, from 0.4 to 0.696, the pressure dependence of � 𝛾𝛾
𝐺𝐺𝐺𝐺
�
𝑞𝑞
 

is negligible, and the pressure dependence of 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝛾𝛾  is determined by the pressure dependence 

of the Burgers vector. For extreme case q=0 (which corresponds to the independence of the 

minimum grain size of 𝛾𝛾
𝐺𝐺𝐺𝐺

 suggested in [60]), 𝑎𝑎 = 0.0033 < 0.0163 (see Eq. (S43)), and the 

effect of pressure on the grain size according to Eq. (S40) is undetectable experimentally.  

Since the pressure dependence of 𝛾𝛾 of ω-Zr is not well defined, the limits of its variation will 

be determined which still make the grain size pressure independent. Assuming 𝛾𝛾 =

𝛾𝛾0�1 + 𝑎𝑎𝑠𝑠𝑠𝑠𝑝𝑝�, one obtains: 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝛾𝛾 ≈ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

0 �1 + �0.0099 + 𝑎𝑎𝑠𝑠𝑠𝑠�𝑞𝑞𝑞𝑞 − 0.0033𝑝𝑝�.                              (S56) 

For 𝑎𝑎𝑠𝑠𝑠𝑠 > 0, assuming the largest q=0.696, one obtains from Eq. (S43) that for 𝑎𝑎𝑠𝑠𝑠𝑠 <

0.0381, the pressure effect on grain size will be undetectable in the current experiments. For 

𝑎𝑎𝑠𝑠𝑠𝑠 < 0, assuming the smallest q=0.4, one obtains from Eq. (S43) that 𝑎𝑎𝑠𝑠𝑠𝑠 > −0.0226. For 

metals in Table S2 with relatively high SFE like Zr (except for Ag with a significantly lower 

SFE), their 𝑎𝑎𝑠𝑠𝑠𝑠 values are within the range of (-0.0226, 0.0381). Thus, Eq. (S40) agrees with 

pressure-independent steady grain size in the performed experiments.  

 Next, let us evaluate the effect of the pressure dependence of the melting temperature 

from Eq. (S49) on the 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑚𝑚  using Eq. (S41). With the help of Eq. (S52), one obtains 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑚𝑚 ≈ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

0 (1 − 0.0112𝑝𝑝).                                            (S57) 

Comparison with Eq. (S43) shows that Eq. (S41) agrees with the pressure-independent steady 

grain size in experiments. Since the dependence of 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑚𝑚  in Eq. (S41) comes from the 

relationship between melting temperature 𝑇𝑇𝑚𝑚 and the activation energy of self-diffusion, one 

can conclude that the latter also cannot lead to the pressure dependence of the grain size. 

 The effect of the shear modulus, hardness and the yield strength can be studied based 

on Eq. (S39). Hardness for Zr is independent of pressure applied during HPT [12], which 

gives: 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝐺𝐺 ≈ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

0 (1 + (0.0132𝑚𝑚− 0.0033)𝑝𝑝).                               (S58) 
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For m=1.667 in [60], one has 𝑎𝑎 = −0.0186, which is slightly larger in magnitude than 0.0163 

and is marginally detectable. For m=1.25 in [52], one gets 𝑎𝑎 = −0.0132, which is 

undetectable experimentally. For an averaged value 𝑎𝑎 = −0.0159, Eq. (S43) is met. Note that 

in Eq. (S38), the net effect of the shear modulus comes from three terms. If one considers all 

of them, m should be reduced by 0.25. For m=1.417, one has 𝑎𝑎 = −0.0154 and Eq. (S43) is 

met. However, initially in [53] for Eqs. (S37) and (S38), combination (𝐺𝐺/𝜎𝜎)1.25 is used 

instead of (𝐺𝐺/𝐻𝐻𝐻𝐻)1.25, where 𝜎𝜎 is the external stress. Then 𝜎𝜎 is equaled to the yield strength, 

which is not true (because external stress for HPT can be much larger than the yield strength), 

and then the yield strength is substituted with 𝐻𝐻𝐻𝐻/3. Now, let us substitute 𝐻𝐻𝐻𝐻 = 3𝜎𝜎𝑦𝑦 in Eq. 

(S39) and take pressure dependence of the yield strength into account:  

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎𝑦𝑦

𝑏𝑏
= 𝐵𝐵 � 𝐺𝐺

𝜎𝜎𝑦𝑦
�
𝑚𝑚

.                                                  (S60) 

One obtains 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎𝑦𝑦 ≈ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

0 (1 − (0.0646𝑚𝑚 + 0.0033)𝑝𝑝).                             (S61) 

Even for smaller m=1.25, one obtains  𝑎𝑎 = 0.0841, which is more than 5 times larger than the 

limit in Eq. (S43). Since there is not any parameter with such a large a to compensate for the 

effect of 𝜎𝜎𝑦𝑦(𝑝𝑝), one can conclude that including pressure-dependent yield strength 𝜎𝜎𝑦𝑦(𝑝𝑝) as 

one of the parameters affecting the steady grain size contradicts the experimental results, 

which show pressure-independent minimum grain size. This also excludes the argument that 

the pressure independent minimum grain size is caused by some specific deformation 

mechanisms (like dislocations, twinning, or grain boundary sliding) or transition from laminar 

to turbulent flow [32-34], because all of them are reflected in the experimental pressure 

dependent yield strength.  

 Finally, collecting all terms in Eq. (S38) and pressure dependence of 𝑇𝑇𝑚𝑚, 𝐺𝐺, 𝛾𝛾, and 𝑏𝑏, 

one obtains the combined effect of the pressure on the grain size: 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
0 (1 + 0.0037𝑝𝑝),                                                    (S62) 

which is 4.4 times smaller than can be detected in experiments. It is clear from Eq. (S54) for 

q=0.5 that the SFE does not contribute to Eq. (S62), i.e., the term with 𝛾𝛾 can be eliminated 

from Eq. (S38). An increase in the grain size with p, while negligible, is counterintuitive. It 

comes mostly from the term (𝐺𝐺/𝜎𝜎)1.25, which is not well-defined in [52, 53] because 𝜎𝜎 is 

quite arbitrary. Eliminating this term, one obtains:  

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
0 (1 − 0.0128𝑝𝑝),                                                    (S63) 
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which looks more realistic but is still, according to Eq. (S43), undetectable in experiment. 

Thus, the known expressions for the grain size dependence of various material parameters 

confirm obtained finding that the steady grain size is pressure independent.  

   

Table S2. Stacking fault energy and pressure dependence parameter 𝑎𝑎𝑠𝑠𝑠𝑠 from [58] 

 Co Ni Cu Rh Pd Ag Ir Pt Au 

𝛾𝛾0 (mJ/m2) 168.3 153 42.4 203.4 139.5 16.9 357.2 288.1 32.6 

𝑎𝑎𝑠𝑠𝑠𝑠 (GPa−1) 0.0077 0.0078 0.0165 0.0113 0.0186 0.0710 0.0076 0.0111 0.0245 

 

3. Relationship between the yield surface and surface of perfect plasticity 

 

Obtained results provide the first quantitative proof of the fixed isotropic pressure-

dependent surface of perfect plasticity independent of 𝜺𝜺𝑝𝑝 and 𝜺𝜺𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝ℎ, which is far beyond the 

observation and description in terms of the 'steady hardness'. However, it is well-known that 

severely deformed materials exhibit plastic strain-induced texture and anisotropy,   including 

the Bauschinger effect described by back stresses. Thus, the traditional yield surface is 

evolving, anisotropic, and depends on 𝜺𝜺𝑝𝑝 and 𝜺𝜺𝑝𝑝
𝑝𝑝𝑎𝑎𝑡𝑡ℎ (Figure 2). To resolve this seeming 

contradiction, let use two different surfaces in a “5D” space of deviatoric stresses 𝒔𝒔 at fixed p: 

traditional evolving anisotropic yield surface 𝑓𝑓(𝒔𝒔, 𝜺𝜺𝑝𝑝, 𝜺𝜺𝑝𝑝
𝒑𝒑𝑎𝑎𝑎𝑎ℎ) = 𝝈𝝈𝒚𝒚(𝑝𝑝) and fixed isotropic 

surface of perfect plasticity 𝜑𝜑(𝒔𝒔) = 𝜎𝜎𝑦𝑦(𝑝𝑝). After some critical plastic strain, the yield surface 

reaches 𝜑𝜑(𝒔𝒔) = 𝜎𝜎𝑦𝑦(𝑝𝑝), and at further monotonous loading, it moves with the deviatoric stress 

vector s along the fixed isotropic surface  𝜑𝜑(𝒔𝒔) = 𝜎𝜎𝑦𝑦(𝑝𝑝). Thus, the material deforms like 

perfectly plastic, isotropic with the fixed surface of perfect plasticity. However, during sharp 

change in loading direction or unloading and reloading in a different direction in the stress 

space, flow occurs in accordance with actual evolving anisotropic yield surface 

𝑓𝑓(𝒔𝒔, 𝜺𝜺𝑝𝑝, 𝜺𝜺𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝ℎ) = 𝝈𝝈𝒚𝒚(𝑝𝑝). Due to limited measurement capabilities and strongly heterogeneous 

fields, and the complexity of equation 𝑓𝑓(𝒔𝒔, 𝜺𝜺𝑝𝑝, 𝜺𝜺𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝ℎ) = 𝜎𝜎𝑦𝑦(𝑝𝑝), it is impossible to determine it 

experimentally. However, finding the surface of perfect plasticity 𝜑𝜑(𝒔𝒔) = 𝜎𝜎𝑦𝑦(𝑝𝑝) is very 

important because it fully characterizes material's behavior after some critical level of severe 

plastic deformation and for monotonous loading. Note that the isotropy of the surface of 

perfect plasticity 𝜑𝜑(𝒔𝒔) = 𝜎𝜎𝑦𝑦(𝑝𝑝) follows not only from experiments but from the theory. 
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Indeed, since initially polycrystalline material with stochastic grain orientation without texture 

is isotropic, its anisotropy during deformation can come from 𝜺𝜺𝑝𝑝 and 𝜺𝜺𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝ℎ only, i.e., it is 

strain-induced. Since 𝜑𝜑(𝒔𝒔) = 𝜎𝜎𝑦𝑦(𝑝𝑝) is independent of 𝜺𝜺𝑝𝑝 and 𝜺𝜺𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝ℎ, the only source for 

anisotropy disappears. Note that the steady state in the yield strength does not correspond to 

the steady state in torque in high-pressure torsion [61], mostly due to the complexity of the 

friction condition. Also, in [62], steady yield strength and dislocation density independent of 

the changes in strain rate path were obtained in molecular dynamics simulations for a single 

crystal Ta. These results were called “a tantalizing general hypothesis that merits further 

scrutiny.” 

 

4. Notes on the importance of in-situ studies of severe plastic deformations under high 

pressure 

 

As mentioned in the main text, the effects of severe plastic deformations under high pressure 

on phase transformations and microstructure evolution are mostly studied with HPT with 

metallic or ceramic anvils. However, all these results were obtained postmortem after pressure 

release and further treatment during sample preparation for mechanical and structural studies. 

The only paper [13] studies the dislocation density and crystallite size in Ni during HPT in a 

single peripheral region in situ, which reveals the main pathways to the final microstructure. 

The most important results are: (a) significant reduction in the crystallite size and increase in 

dislocation density occur during compression to 8 GPa with the true strain of 10-20% only, 

negligible in comparison with strain during torsion; (b) nonmonotonic character of variation 

of dislocation density during torsion is observed; (c) during pressure release after HPT, 

crystallite size increases, and dislocation density decreases by a factor of 2, which is a strong 

argument for in-situ study of HPT. Some drawbacks of the experiments in [13] are overcome 

in the current work. In [13], the beam passes also through a protrusion part of a sample, which 

underwent relatively small plastic strain under compression and had lower and very 

heterogeneous stresses. This brings some inaccuracy, which varies during the torsion. Such 

inaccuracy is minimized in the current study by utilizing axial diffraction through sample 

thickness. Pressure in [13] is evaluated as a force over area, while it is quite heterogenous 

along the radius and reduces with increasing plastic strain [61], which may be a reason for the 

nonmonotonic variation of dislocation density. Here, pressure is evaluated locally at each 

point and deformation stage. Also, since data in [13] are collected from a single region, the 

existence of the steady dislocation density and crystallite size can be concluded only. Their 
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independence from pressure and straining path cannot be drawn from [13]. The stress and 

strain states at the edge are quite different from the rest of the sample [61]; they are excluded 

from the current consideration. Note that importance of in-situ molecular dynamics analysis 

versus ex-situ experiments was stressed in [62].  

Finite element analysis, based on phenomenological [25, 63] or dislocation-based 

models [51], is one of the promising ways to understand and optimize processes of 

nanostructure formation. However, the pressure dependence of the yield strength, dislocation 

densities, and grain size were neglected because they are unknown. In-situ study in general 

and results obtained here allow one to find pressure-dependence the governing parameters; 

their independence from the plastic strain tensor and its path under high pressure, found here, 

significantly simplify models. Also, rough-DAs eliminate the problem of describing contact 

friction required for modeling deformational processes in DAC and rotational DAC [20, 25, 

51, 63].   

 While here complete phase transformation to ω-Zr in some regions under compression 

at 3 GPa at the center (Fig. 3) and in the entire sample at 6 GPa is obtained, in [12] retaining 

α-Zr was observed at HPT even after 20 turns. It is written in [12]: “Although this suggests 

that the complete transformation does not occur, there can be a possibility that a reverse 

transformation from the ω phase to the α phase might have occurred during mechanical 

polishing for the preparation of the XRD specimens as reported in an earlier experiment that 

the reverse transformation occurred during cold machining.“ A complete transformation in the 

reported in-situ experiments confirms the reverse transformation during cold machining and 

further underlines the importance of in-situ studies. Note that preparing a sample for 

TEM/SEM may lead to additional changes in the phase fraction, dislocation density, and grain 

size.     

 One of the general problems in high-pressure material synthesis is retaining metastable 

high-pressure phases at normal pressure and using them for engineering applications. 

Examples included superhard [36, 37] and energetic [64, 65] materials, and high-temperature 

superconductors [66, 67, 68]. This can, in particular, be promoted by SPD under high pressure  

[1,36,37,38,40]. While ex-situ studies give yes-no answers, in-situ investigation can be used 

for designing deformation-transformation paths to keep the desired metastable phases, 

especially in multiphase systems like Si [69].  

 While obtained results are consistent with known results [1-8, 11] on the existence of 

the stationary states after severe plastic straining in terms of hardness, grain size, and 

dislocation density, and independence of these states of pressure, they mean much more. 
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Obtained results are obtained directly under pressure versus local pressure at each sample 

point. Previous results were obtained at the normal pressure and versus averaged pressure 

over the sample during HPT. Since pressure is distributed very heterogeneously, using an 

averaged pressure contains a significant error. As an example, independence of the hardness 

HV=3𝜎𝜎𝑦𝑦0 and, consequently, the yield strength of pressure at HPT is obtained for Zr for p<4 

GPa and 6<p<40 GPa [12], Ti for p<4 GPa and 20<p<40 GPa [28], for p<4 GPa and 6<p<40 

GPa,  V [30], Ni, Hf, Pt, Ag, Au, Al, Cu, and Cu-30%Zn [11]. However, it does not imply 

that the yield strength is independent of the pressure since explicit pressure dependence for Zr 

is obtained. Similarly, the independence of dislocation density and grain size measured at the 

ambient pressure of the pressure during HPT does not imply that obtained in-situ 

measurements should give independence of dislocation density and grain size of the actual 

pressure. That is why such independence that is found in the paper is a new result. Also, since 

pressure is distributed very heterogeneously, utilization of an averaged pressure contains a 

significant error. 
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Supplementary Figures 

 

 

 
Figure S1. Distributions of components of Lagrangian plastic strains in a quarter of a sample for three 

loadings characterized by the maximum pressure in a sample. Very heterogeneous and nontrivial distributions 

are observed, caused by heterogeneous contact friction. At the symmetry axis (left side of a sample) and symmetry 

plane (bottom of a sample), shear strains 𝐸𝐸𝑟𝑟𝑟𝑟
𝑝𝑝  are zero. At the contact surface with a diamond (top of a sample), 

shear strains and particle rotations reach their maximum due to large contact friction. During compression, each 

material particle flows radially in the region with larger shear and different proportions of the normal strain, i.e., 

is subjected to complex nonproportional straining, very different from other particles. Thus, numerous plastic 

strain tensors and straining paths are realized. Adopted with changes from [26] with permissions.   
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