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A continuum thermomechanochemical model of the behavior of a plastic-bonded explosive �PBX�
9501 formulation consisting of the energetic crystal octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
�HMX� embedded in a polymeric binder is developed. Our main focus is on the study of the �↔�
phase transformations �PTs� in crystalline HMX under a complex pressure-temperature path. To
reproduce the pressure-temperature path, in particular during heating of PBX inside of a rigid
cylinder, the �↔� PTs in HMX are coupled to chemical decomposition of the HMX and binder
leading to gas formation, gas leaking from the cylinder, elastic, thermal, and transformational
straining as well as straining due to mass loss. A fully physically based thermodynamic and kinetic
model of the �↔� PT in HMX crystal is developed. It is based on a suggested nucleation
mechanism via melt mediated nanocluster transformation and the recently revealed growth
mechanism via internal stress-induced virtual melting. During the nucleation, nanosize clusters of
the � phase dissolve in a molten binder and transform diffusionally into � phase clusters. During the
interface propagation, internal stresses induced by transformation strain cause the melting of the
stressed � phase much below �120 K� the melting temperature and its immediate resolidification into
the unstressed � phase. These mechanisms explain numerous puzzles of HMX polymorphism and
result in overall transformation kinetics that is in good agreement with experiments. Simple
phenomenological equations for kinetics of chemical decomposition of the HMX and the binder are
in good correspondence with experiments as well. A continuum deformation model is developed in
two steps. The geometrically linear �small strain� theory is used to prove that the internal stresses
and macroscopic shear stresses are negligible. Then a large strain theory is developed under
hydrostatic loading. The developed continuum thermomechanochemical model is applied in the
accompanying paper �V. I. Levitas, B. F. Henson, L. B. Smilowitz, D. K. Zerkle, and B. W. Asay,
J. Appl. Phys. �submitted�� to modeling the heating of PBX inside of a rigid cylinder. © 2007
American Institute of Physics.
�DOI: 10.1063/1.2817616�

I. INTRODUCTION

PBX 9501 is an important high explosive with wide ap-
plications that is currently under intensive study in govern-
mental laboratories and academia. The PBX 9501 formula-
tion consists of 94.9% by weight of the organic energetic
crystals octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
�HMX� with the remainder being a polymeric binder. The
binder consists of 2.5% of Estane, 2.5% nitroplasticizer, and
0.1% antioxidant. Prediction of the thermomechanochemical
behavior of PBX under various temperature-pressure loading
histories in a preignition regime is of great importance for
the safety of its storage, transportation, and handling. This is
difficult without the understanding and the ability to model
actual chemical, physical, and mechanical processes that oc-
cur in the HMX and binder during thermomechanical load-
ing. We will focus on the study of the reconstructive �↔� in
crystalline HMX under complex pressure-temperature paths.

The �→� PT starts above 432 K at ambient pressure. This
PT is accompanied by 8% of transformation volume expan-
sion which produces huge internal stresses within HMX that
affect the transformation thermodynamics, kinetics and mi-
crostructure. Such a volume change also creates internal
stresses within the PBX formulation as well as within a mac-
roscopic sample if its deformation is restricted �for example,
by rigid walls�. Knowledge of the kinetics of the �↔� phase
transformation �PT� equation is very important not only be-
cause of these stresses but also because of the greater
sensitivity1 and different properties of the � phase.

There are a number of phenomenological kinetic models
for the �↔� PT.2–5 The main drawback of any phenomeno-
logical model is the impossibility to apply it beyond the re-
gion of parameters �temperature and pressure evolution�
where it is directly confirmed experimentally. In most cases,
these data are generated in isothermal experiments under
zero pressure.2–5 In two particular cases of experiments un-
der high pressure,6,7 the results are not well understood. In
one experiment at high temperatures,6 the slope of the ther-
modynamically calculated �−� equilibrium line contradicts
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known experimental data. In another,7 the beta-delta phase
transition is observed at temperatures well below the equilib-
rium temperature subsequent to the release of a pressurized
sample. In contrast, the extension of physical mechanism-
based models beyond the range of parameters where they are
checked experimentally is much more reliable.

Along this direction, we revealed recently8–10 that the
�↔� PT in the HMX energetic crystal occurs via the virtual
melting mechanism. The virtual melting mechanism has been
incorporated into several kinetic models by combination with
several phenomenological nucleation models.8,10,11 As will
be shown in Sec. IV in Ref. 12, even the most advanced
kinetic model using a phenomenological nucleation
kinetics10,11 exhibits contradictory results when applied to
either the high pressure regime or cyclic PT. In the current
paper we further developed a suggested physical nucleation
mechanism in HMX via melt mediated nanocluster
transformation.13 It allows us to explain extremely unusual
nucleation occurring very close �0.6 K� to the phase equilib-
rium temperature �e. A combination of nucleation kinetics
based on this mechanism and the growth kinetics based on
virtual melting results in a fully physical model for the over-
all transformation kinetics.

To reproduce complex pressure-temperature paths, in
particular during heating of PBX inside of a rigid cylinder,
the �↔� PTs in HMX are coupled to other chemical and
mechanical processes. They include: chemical decomposi-
tion of the HMX, nitroplasticizer, and Estane leading to gas
production, gas leaking from the closed volume, and defor-
mations of PBX constituents in solid, liquid, and gas form.
When these processes �including the �↔� PTs� occur in a
closed volume, they are coupled through the pressure gener-
ated by thermal expansion, transformation strain, mass loss
due to chemical decomposition, and gas leaking, as well as
gas formation in a closed volume. Development of such a
coupled thermomechanochemical model and its application
in numerical simulations of the earlier mentioned processes
is the main goal of the current two-part paper.

The paper is organized in the following way. In Sec. II,
the main thermodynamic functions for the �→� PT and
melting of the � and � phases are presented. They are used in
subsequent sections to develop a physically based nucleation
and growth kinetics for the �→� PT. In Sec. III, a nucleation
mechanism for reconstructive solid-solid PT in HMX via
melt mediated nanocluster transformation is described. The
kinetic equation for nucleation is derived under variable tem-
perature and pressure. We initially reported on this mecha-
nism in a short letter.13

In Sec. IV, the kinetic equations for the �−� interface
velocity and volume fraction of the � phase due to growth
are derived based on the virtual melting growth
mechanism.8–10 In Sec. V, both nucleation and growth kinet-
ics are combined to model the overall kinetics of the �→�
PT. The temperature dependence of both interface propaga-
tion velocity and volume fraction of the � phase is in good
agreement with various experiments under isothermal condi-
tions and zero pressure. In Sec. V, a continuum mechanical
model for a composite consisting of an HMX crystal embed-
ded in a binder with allowance for the �→� PT and chemi-

cal decomposition of the HMX and binder is developed. This
problem is approached in two steps. First, we show based on
geometrically linear �i.e., small strain� theory that the effect
of the shear modulus of the binder and internal stresses be-
tween the HMX and the binder can be neglected, i.e., the
composite can be considered as a hydrostatic medium. This
simplification allowed us to develop an exact, geometrically
nonlinear theory that correctly takes into account all finite
and large strains. In Sec. VII, simple phenomenological
models for chemical decomposition of the HMX and binder
and for gas leaking are formulated. Equations for the kinetics
of chemical decomposition of the nitroplasticizer and Estane
are in good correspondence with temperature ramp experi-
ments at constant heating rate. Kinetic equations for all
chemical decomposition processes in PBX describe the iso-
thermal experimental data well. An equation of state for the
resulting gas phase is formulated. An expression for pressure
in PBX is derived that takes into account the coupling of all
thermomechanochemical processes. Section VIII contains
the concluding remarks. In the accompanying paper,12 the
results of the simulation of coupled phase transformation,
chemical decomposition and deformation in PBX 9501 dur-
ing heating inside of a rigid cylinder are presented.

II. THERMODYNAMICS OF �−� PHASE
TRANSFORMATION AND MELTING IN HMX

Along the lines described in Refs. 8, 10, and 11, we
determine the thermodynamic functions necessary for the de-
velopment of our kinetic models. The molar thermodynamic
driving force for the �→� PT is

− �g�→� = − ��h�→� − ��s�→�� − p�v�−�, �1�

where �g�→�, �h�→�, �s�→�, and �v�−� are the change in
the molar Gibbs potential, enthalphy, entropy, and volume
during the �→� PT, � is the temperature, and p is the pres-
sure. Since the maximum pressure at which the �→� PT is
possible is less than 0.245 GPa �pressure at the triple point,
see Ref. 11� and the bulk modulus is B=15 GPa,14 the pres-
sure dependence of the bulk moduli in such a pressure range
can be neglected. The change in elastic energy is then de-
fined as 0.5p2�1 /B�−1 /B��. Since literature values of the
bulk moduli of HMX differ significantly,14,15 and since the
difference between B� and B� should be relatively small, the
change in elastic energy is neglected in Eq. �1�.

We note that there is some scatter in the thermodynamic
data, however, assuming constant transformation enthalphy
�h�→�=9.8 kJ /mol,2,3 and the entropy related to enthalphy
through phase equilibrium temperature �e=432 K �within a
range given in Refs. 16 and 17�, i.e., �s�→�=�h�→� /�e

=22.68 J /mol K, we obtain

− �g�→� = �s�→��� − �e� − p�v�−�. �2�

Note that the phase equilibrium temperature may depend
on impurities �in particular, RDX�. We choose �e=432 K
since it provides the best fit for the various interface velocity
experiments �see Refs. 9–11�. Since volumetric transforma-
tion strain �t=�� /��−1, then
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where M �0.296 kg /mol is the HMX molecular weight and
�t=0.08;14 the mass density of the � phase at phase equilib-
rium temperature �=432 K is estimated by equation ��

=1905 / �1+��
��=1873 kg /m3, where the mass density at 300

K is 1905 kg /m3 �Ref. 18� and ��
� is determined in Ref. 19

�see Eq. �47��; the mass density of the � phase at �
=432 K is ��=�� / �1+�0

t �=1734 kg /m3. Then �v�−�

=1.264�10−5 m3 /mol �in Ref. 2, �v�−�=1.14
�10−5 m3 /mol is used which corresponds to �t=0.07�. The
thermodynamic driving force for the �→� PT per unit vol-
ume which we will need in the nucleation problem is

− �G�→� = − �g�→��/M

= ��s�→��� − �e� − p�v�−���/M . �4�

Similarly, the molar thermodynamic driving force for
melting of � and � phases are

− �g�→m = �s�→m�� − �m,�� − p�v�−m �5�

and

− �g�→m = �s�→m�� − �m,�� − p�v�−m. �6�

Here �m,� and �m,� are the melting temperatures of the � and
� phases at ambient pressure, respectively. The melting tem-
perature of the � phase reduces with HMX decomposition
and that is why it depends on the heating rate. We choose
�m,�=550 K which is within the range given in Refs. 16 and
17 �note that in Refs. 8–10 we used �m,�=551 K�. Taking
the enthalphy of melting of the � phase as �h�→m

=69.9 kJ / �mol K�,2,3 we obtain the entropy of melting of the
� phase �s�→m=�h�→m /�m,�=127.09 J / �mol K�. From the
temperature independent enthalphy and entropy of these
transformations, we obtain the enthalphy and entropy of
melting of the � phase: �h�→m=�h�→�+�h�→m=79.7 kJ /
mol and �s�→m=�s�→�+�s�→m=149.77 J / �mol K�. The
melting temperatures of the � phase are then �m,�

=�h�→m /�s�→m=532 K. This is higher than 518.5 K given
in Refs. 17 and 20 but is close to our estimate 531.3 K �see
Ref. 10, Sec. 4i� based on the extrapolation of the thermody-
namic data from Ref. 21. This difference may be related to
the inaccuracy of the interpolation of data because of a pos-
sible temperature dependence of the transformation enthal-
phy and entropy; however, it is not important for the current
study of the �−� PT. The change in molar volume during
melting of the � and � phases are: �v�−m=2.330
�10−5 m3 /mol ���−m

t =0.147� and �v�−m=�v�−m−�v�−�

=1.066�10−5 m3 /mol ���−m
t =0.067�.2,3 Since in Ref. 2 we

used �v�−�=1.14�10−5 m3 /mol, �v�−m=1.19�10−5 m3 /
mol was obtained in that work.

Note that the only independent parameters important for
the current study of the �−� PT �bold in Table I in Ref. 12�
are �h�→�=9.8 kJ /mol, �e=432 K, �h�→m=69.9 kJ /
�mol K�, �v�−�=1.264�10−5 m3 /mol, and �v�−m=1.066
�10−5 m3 /mol, since only they participate in the kinetic
equation for the �−� PT �see Eqs. �16�, �19�, and �20��. That
is why the uncertainty in other earlier parameters does not
affect our results.

The phase equilibrium lines for �−� PT and the melting
of � and � phases are obtained by setting the driving force to
zero. This can be described by the equations

p�−��MPa� = − 775.139 + 1.794� , �7�

p�−m�MPa� = − 3420.600 + 6.428� , �8�

p�−m�MPa� = − 6557.22 + 11.922� . �9�

The pressure-temperature phase equilibrium diagram is
presented in Ref. 11. The key point is that with growing
pressure the difference in temperature between the �−�
equilibrium and melting of � and � phases lines reduces.
This makes the virtual melting PT mechanism even more
probable at high pressure than at ambient pressure. The triple
point corresponds to �=570.224 and p=0.245 GPa.

III. NUCLEATION MECHANISM FOR THE
RECONSTRUCTIVE SOLID-SOLID PHASE
TRANSITION IN HMX VIA MELT MEDIATED
NANOCLUSTER TRANSFORMATION

A. Experimental observations

We recently observed a paradoxical experimental
result:2,3 the reconstructive �→� PT in HMX starts at 432.6
K, just above the phase equilibrium temperature �e=432 K.
Even if �e were several degrees lower �for example, due to
RDX inclusions�, nucleation is still very close to �e and all
conclusions discussed later would remain valid.

The �→� PT is accompanied by a large volumetric ex-
pansion, �t=0.08. Thus, the associated energy of internal
stresses �ge=8.947 kJ /mol, see Ref. 10� is very large and, if
not relaxed, should increase the PT temperature by
ge /�s�→�=400 K. The additional nucleation barrier due to
the interface energy makes an even larger increase in the
nucleation temperature possible. For example, for martensi-
tic PT in steels �which requires deformation only and not
reconstruction of the crystal lattice and for which the elastic
energy can be easily relaxed through traditional slip and
twinning mechanisms, in contrast to HMX�, �t=0.02 but the
PT onset temperature deviates from �e by �100 K. Another
example is the PT in KCl which �despite the volume increase
of 11%� has a relatively small pressure hysteresis of 0.4 GPa,
i.e., the deviation of the transformation pressure from the
equilibrium pressure is 0.2 GPa. Using the pressure-
temperature equilibrium line for �−� PT �Eq. �7��, 0.6 K of
the deviation of the transformation temperature from the
phase equilibrium temperature can be transformed to a pres-
sure deviation of 10−3 GPa, which is 200 times smaller than
for KCl. No existing theory can explain nucleation so close
to the equilibrium line.

The earlier result was obtained for PBX 9501, i.e., for
HMX crystals bonded with a binder �Estane and nitroplasti-
cizer�. Our preliminary observations in Ref. 22 led us to a
hypothesis that � HMX dissolves in the molten nitroplasti-
cizer and at temperatures above �e nucleates the � phase at
the interface between the HMX and the liquid.

As we will show later, such a mechanism does com-
pletely remove the energy of elastic stresses. We also show
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that because of high interface energy any such homogeneous
or heterogeneous nucleation is kinetically impossible close to
the phase equilibrium temperature. We suggest later that the
liquid nitroplasticizer contains nanometer size clusters of the
� phase which may appear during dissolution of HMX in the
liquid and the destruction of HMX surface asperities. The
reconstructive �→� PT in such a cluster is accompanied by
a small �or even negative� change in interface energy and
allows nucleation of the � phase near the phase equilibrium
temperature. Using this mechanism thermally activated
nucleation kinetics is derived.13 We combine it in Sec. V
with our recent results on the virtual melting growth
mechanism8–11 to develop a physically based kinetic model
for the �→� PT which is in very good correspondence with
our experiments.

B. Nucleation mechanism and kinetics

We first show here that the surface nucleation mecha-
nism discussed earlier22 completely relaxes the large energy
of internal stresses �8.947 kJ /mol� �Ref. 10� that would be
generated during direct solid-solid PT. Let nucleation occur
in a closed liquid cavity with volume Vl; then the elastic
energy due to the volume change is equal to 0.5 K�0

2. Here
�0=�tVn /Vl is the volumetric strain in the liquid, Vn is the
volume of the � phase nucleus, and K is the bulk modulus of
the liquid. Assuming conservatively the volume of the liquid
nitroplasticizer near each HMX crystal Vl=105�105�104

=1014 nm3 and the volume of nucleus Vn=103 nm3 �see our
estimates later�, we derive �0=10−11�t=8�10−13, which is
negligible. Because in reality volume Vl is not closed, volu-
metric strain �0 is even smaller.

1. Impossibility of a classical homogeneous and
heterogeneous nucleation

Despite the relaxation of internal stresses, the nucleation
barrier due to the interface energy is still too large to allow
such a nucleation mechanism close to the phase equilibrium
temperature. The time for a thermally activated nucleation is
described by the Arrhenius equation23,24

tn = t̃
h

k�
exp�En

k�
� =

t̄

�
exp�En

k�
� , �10�

where k=1.381�10−23 J /K and h=6.626�10−34 J s are
Boltzmann’s and Planck’s constants, En is the activation en-
ergy for nucleation, and t̄ and t̃ are pre-exponential multipli-
ers �determined later from the best fit to experimental data�.
The activation energy is equal to the energy of a critical
nucleus. For a spherical nucleus it is described by the well
known equation23

En =
16��	3

3�G�→�
2 , �11�

where �	 is the change in surface energy. For precipitation
of the � phase from the solution of HMX in liquid nitroplas-
ticizer, �G�→� has to take into account the thermodynamic
properties of solution. They are unknown, so we will use the
difference in the Gibbs potential of the � and � phases,
which as we will see does not change our conclusions. Sub-

stituting �G�→� and all the earlier data in Eq. �11�, one ob-
tains for p=0,

En =
8.366 � 10−10�	3

�� − 432�2 . �12�

Nucleation can occur during the time of an experiment
only if En=40k to 80k�.23 Indeed, for En=40 to 80k�,
exp�En /k��=1017−1034. For t̄ /�=10−17 s �which has the
meaning of the nucleation time for En=0�, Eq. �10� results in
nucleation time tn= �1−1017� s that can be realized in experi-
ments or in nature. On the other hand, for 	s−l=6
�10−2 J /m2 and �=432.6 K, we obtain from Eq. �10� tn

=1036489442 s; for 	s−l=10−2 J /m2 and �=438 K �which in-
creases �G�→� by a factor of 10�, we still have tn

=101646 s, which is absolutely unrealistic for an actual
nucleation.

Taking �=432.6 K and En=80k�, we estimate from Eq.
�12� the change in surface energy of �	
6�10−4 J /m2

that allows the nucleation. This number is extremely small in
comparison with reality. For homogeneous nucleation of �
crystals in the molten nitroplasticizer, �	 is the interface
energy between the solid � phase and liquid nitroplasticizer,
	�−l. Usually the solid-liquid interface energy is of the order
of magnitude 	s−l=10−1−10−2 J /m2. Consequently, homo-
geneous nucleation is impossible, like for most PTs. Assum-
ing 	s−l=6�10−2 J /m2, then the activation energy for ho-
mogeneous nucleation is six orders of magnitude larger than
allowable by the equation En=80k�. Even for 	s−l

=10−2 J /m2, an eventual increase in the driving force for a
PT by one order of magnitude, due to the temperature depen-
dence in −�G�→�, by an eventual chemical reaction, or by
the thermodynamics of dissolution of HMX in the liquid
phase, does not change our conclusion that the homogeneous
nucleation is impossible.

For heterogeneous nucleation at the flat surface of the �
phase one obtains23

En =
8.366 � 10−10	�−l

3

�� − 432�2 S��� ,

S���: = �2 + cos ���1 − cos ��2/4. �13�

Here the wetting angle � is determined by the mechanical
equilibrium of the components of surface tension along the
flat interface,23 namely 	�−l=	�−�+	�−l cos � �i.e., cos �
= �	�−l−	�−�� /	�−l�, where 	�−l is the energy of interfaces
between the � phase and surrounding liquid and 	�−� is the
�−� interface energy. A low-energy coherent interface be-
tween the � and � phases cannot be expected because it will
cause a significant increase in elastic energy of internal
stresses and create an additional thermodynamic barrier to
nucleation. Usual estimates for an incoherent interface are
	�−��1 J /m2�10	s−l to 100	s−l. Heterogeneous nucleation
is favorable in comparison with the homogeneous one for
cos ��1, i.e., for 	�−l�	�−�. In fact, our case is the oppo-
site, i.e., 	�−l�	�−�. For such a situation, the mechanical
equilibrium 	�−l=	�−�+	�−l cos � is not satisfied and wet-
ting is impossible. Thus, heterogeneous nucleation at the in-
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terface between the liquid and the � phase is kinetically even
less favorable than homogeneous nucleation.

2. Nucleation mechanism via cluster to cluster
transformation

Let us consider the following mechanism of �→� PT
through a liquid nitroplasticizer. We assume that the liquid
medium contains nanometer size clusters of the � phase that
may appear during destruction of HMX surface asperities
and their suspension in the liquid. When such a cluster un-
dergoes the reconstructive �→� PT, then the activation en-
ergy for nucleation is determined by the same Eq. �11� �or
Eq. �12�� but with different change in surface energy, �	
=	�−l−	�−l. Both 	�−l and 	�−l are large but are of the same
order of magnitude. Then their difference, 	�−l−	�−l, can be
much smaller than each of them �	�−l or 	�−l�, i.e., it can be
as small as �4.7−5.9�10−4 J /m2 required by the kinetic
nucleation condition En=40 to 80k�,23 or even smaller.
Moreover, for one of the PTs, �→� or �→�, the change in
interface energy �	 is negative because they differ by a sign
only. This means that the barrierless nucleation of the � �or
�� phase may occur in the � �or �� cluster. The radius of the
critical cluster is determined by the well known equation23

rc =
2�	

�G�→�

= 1.4 � 10−5 �	

�� − 432�
. �14�

For �=432.6 and �	=4.78�10−4 J /m2 �the value that will
be obtained later�, we calculate the radius of rc=11 nm; a
decrease in change of the interface energy �	 or increase in
the deviation from the phase equilibrium temperature, �
−432, reduces the cluster radius proportionally.

The region near the interface between the � phase and
nitroplasticizer is the most probable place where a critical �
phase cluster may nucleate. The nucleus can grow via disso-
lution of the surface of the � phase crystal, diffusion of mol-
ecules through nitroplasticizer toward the growing � crystal,
and subsequent crystallization onto the surface of the stable �
cluster. The observable macroscopic growth kinetics will
only be determined by those nuclei from the entire popula-
tion of supercritical nuclei �that are usually called opera-
tional nuclei� that are close enough to the interface with the
� phase and have the smallest diffusion path. Some � crys-
tals may touch the � crystal surface �in particular, due to
gravitational and/or electrostatic forces� and form a new �
−� interface. This interface initially contains a very thin
layer of nitroplasticizer; when the interface area grows due to
the �→� PT, content of the nitroplasticizer in the interface is
negligible. Thus, the suggested melt mediated cluster to clus-
ter PT nucleation mechanism completely relaxes the elastic
energy of internal stresses and reduces by orders of magni-
tude the change in interfacial energy. That is why it makes
possible nucleation very close to the phase equilibrium tem-
perature and it initiates the virtual melting mechanism of
growth in the bulk by contact of � clusters with the � surface
phase of larger crystals. This mechanism will be further
elaborated and used later for the development a fully physi-
cal overall kinetic model for the �→� PT.

IV. GROWTH MECHANISM AND KINETICS FOR �^�
PHASE TRANSFORMATION IN HMX VIA
VIRTUAL MELTING

A. Virtual melting growth mechanism

During the solid-solid PT, the transformation strain may
generate two types of internal elastic stresses:

�a� Due to the displacement continuity across a coherent
interface. If the interface completely �or partially� loses
its coherence, theses stresses completely �or partially�
relax.

�b� Due to a change in volume during the PT if the � phase
is completely embedded inside the � phase. Even loss
of interface coherence does not relax these stresses.

The energy of the internal stresses increases the PT tem-
perature. However, since nucleation and growth of the �
phase in PBX 9501 starts at the surface of the � crystal, the
type �b� of internal stresses can be neglected. They are im-
portant, however, for the PT in crystalline HMX without the
binder where the PT starts inside the crystal at some nucle-
ation sites.

We demonstrated earlier8–10 that the energy of the inter-
nal stresses of type �a� at the initially coherent �−� interface
�ge=8.947 kJ /mol� is sufficient to make the energy of the
stressed layer of the � phase equal to the energy of the melt.
Thus, it melts approximately 120 K below the normal melt-
ing temperature of the � phase, �m,�=550 K, i.e., around the
�−� phase equilibrium temperature of �e=432 K at ambient
pressure during the �→� PT. It is also sufficient to reduce
the melting temperature of the � phase from 520 to 400 K
for the � phase during the �→� PT. Melting of the thin layer
is accompanied by a decrease in the interface energies, i.e.,
the melt nucleation is barrierless.8,10 After melting, the elas-
tic stresses completely relax and the interface completely
loses its coherence. A stress-free melt is unstable with respect
to stable � phase and it solidifies into the � phase. The melt
in each transforming material point exists during an ex-
tremely short time required for stress relaxation. We called it
the virtual melt, because it represents a transitional activated
state rather than a thermodynamically stable melt.

A volume decrease during solidification results in tensile
stresses in the solidifying layer of the � phase. Since resis-
tance to fracture during solidification is negligible, the elastic
strains completely relax through nanocracking, vacancy, and
void generation. This explains the nanoporosity that was ob-
served in experiments in Refs. 2 and 3. Without the virtual
melting, compressive stresses caused by the expansion of the
� phase could not lead to nanocracking. The nanoporosity
during the solidification is generated when stresses are near
zero and that is why it does not change the thermodynamics
and kinetics of the �→� PT; the virtual melting eliminates
the whole thermomechanical memory of preceding cycles of
the �↔� PT.8–10 These results explain the paradoxical inde-
pendence of the thermodynamics and kinetics for the first
and the second direct-reverse transformation cycles that was
observed in experiments in Refs. 2 and 3. Under high exter-
nal pressure, we assume that porosity will be closed imme-
diately after its appearance because the yield stress is close to
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zero. Thus, we neglect the damage during the �→� PT via
virtual melting. Also, the athermal interface friction Kat dis-
appears for the virtual melting growth mechanism because
the melt as a hydrostatic medium does not interact with the
long range stress field of the crystal lattice defects.8–10 This
explains why the transformation can progress under a sur-
prisingly small thermodynamic driving force. For the other
PTs in the HMX system, like �↔� and �↔�, the change in
volume is approximately two times smaller and cannot cause
melting. This unrelaxed elastic energy and athermal interface
friction explains the relatively large temperature hysteresis
observed in these systems. In total, 16 theoretical predictions
are in qualitative and quantitative correspondence with ex-
periments performed on the PTs in the HMX energetic crys-
tal.

B. Growth kinetics

The velocity of the �−� phase interface can be de-
scribed by the thermally activated kinetics8 utilizing the vir-
tual melting mechanism

v = v̄0	exp�−
g�→m

R�
� − exp�−

g�→m

R�
�


= v̄0 exp�−
g�→m

R�
�	exp�−

g�→�

R�
� − 1
 , �15�

where v̄0 is the pre-exponential factor. Since

v̄0 exp�− g�→m/R��

= v̄0 exp�− ��h�→m − ��s�→m + p�v�→m�/R��

= v̄0 exp��s�→m/R�exp�− ��h�→m + p�v�→m�/R��

= v0 exp�− ��h�→m + p�v�→m�/R�� ,

where v0= v̄0 exp��s�→m /R�, then

v = v0 exp�−
�h�→m + p�v�−m

R�
�	exp�−

�g�→�

R�
� − 1
 ,

�16�

where v0 was found in Refs. 9 and 10 to be 1010 �m /s
=104 m /s. The term in square parenthesis is a function of
the driving force for �→� PT, which is equal to zero for
thermodynamic equilibrium and greater �smaller� than zero
in the region of stability of the � ��� phase; Eq. �16� is valid
for both �→� �for v
0� and �→� �for v
0� PT. The
temperature dependence of the rate constant is determined by
the heat of fusion h�→m and transformation work of fusion
p�v�−m. Predictions of Eq. �16� are in a good agreement with
various experiments under ambient pressure, see Refs. 9–11.
The time derivative of the volume fraction of the � phase due
to interface motion, ċg, can be determined by the approxi-
mate equation

ċg = �
�

vd�/V = vav�/V , �17�

where V is the volume of the crystal, � is the total area of the
�−� interface, and vav is the averaged interface velocity over
the area �. The total area of interfaces is a function of the

propagation geometry. For the case with numerous interfaces
of stochastic geometry, the approximation ��c�1−c� can be
used. The last equation at least satisfies two limiting cases of
zero area at the beginning and end of PT. If we consider a
group of HMX crystals and in each of them there is a single
interface, but the interface geometry in each crystal is differ-
ent, then the interface area � averaged over the group of
crystals is similar to that for a single crystal with a stochastic
interface geometry, i.e., ��c�1−c�. Assuming that vav can
be determined by Eq. �16�, one obtains

ċg = Bvc�1 − c� = c̄gc�1 − c�exp�−
�h�→m + p�v�−m

R�
�

�	exp�−
�g�→�

R�
� − 1
 . �18�

Here B and c̄g are the parameters that will be found from
experiments. According to transition state theory,24 we as-
sume �similar to nucleation� c̄g=Z�k� /h�, where Z is the pa-
rameter that will be determined from the best fit to experi-
ments.

V. OVERALL KINETICS OF �^� PHASE
TRANSFORMATION IN HMX

The overall nucleation and growth kinetics is described
by the kinetic growth Eq. �18� supplemented by the
nucleation-motivated initial condition

ċ = bc�1 − c�; c�t0� = c0, �19�

b: = Z
k�

h
exp�−

�h�→m + p�v�−m

R�
�	exp�−

�g�→�

R�
� − 1
 .

�20�

We need to distinguish between a critical nucleus, i.e., a
nucleus that corresponds to a maximum of Gibbs energy and
has equal probability to grow or disappear, and an opera-
tional nucleus, i.e., a nucleus which cannot disappear and for
which the volume fraction c0 that is reached at time t0 can be
used as an initial condition in the overall macroscopic kinetic
equation. There are a number of unknown parameters, like
the diffusion coefficient and path, rate of dissolution and
crystallization, which do not allow us to describe in detail the
diffusional growth of a critical nucleus to the operational
one. That is why we assume in the first approximation that t0

is proportional to tn, i.e., from Eq. �10�,

t0 =
t̄0

�
exp�En

k�
� =

t̄0

�
exp� 16��	3

3�G�→�
2 k�

� , �21�

where t̄0 is the pre-exponential factor. We also assume that
the volume fraction of an operational nucleus c0 is a con-
stant. For ambient pressure, Eq. �21� simplifies to

t0 =
t̄0

�
exp	6.058 � 1013�	3

�� − 432�2�

 . �22�

The analytical solution to Eq. �19� under constant tem-
perature and pressure is as follows:
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c =
c0

c0 + �1 − c0�exp�− b�t − t0��
. �23�

For c=0.5 one can find the time to half conversion which
was used in Refs. 2–4 to compare with experiment. This
leads to

t0.5 = t0 +
ln� 1

c0
− 1�

b
. �24�

More generally, the time to reach the volume fraction f
can be found from the condition c= f ,

tf = t0 +
ln� �1−c0�f

c0�1−f� �
b

. �25�

Thus, the time to reach any volume fraction f consists of the
time for appearance of an operational nucleus t0 and time for
its growth.

A. Parameter identification and comparison with
experiments

Substituting into Eq. �24� for the time to half conversion,
Eq. �22� for nucleation time t0 and Eq. �20� for the coeffi-
cient b, we obtain that t0.5 depends on three material param-
eters: �	, t̄0, and Q̄=ln�1 /c0−1� /Z.

In Fig. 1, a good agreement between the prediction of
Eq. �24� and the experimental data for t0.5 for �→�
transformation2,3 was obtained. Parameters �	=4.78
�10−4 J /m2, t̄0=4.5�10−4 s, and Q̄=5.822�1012 are de-
termined from the best fit to experiments for the time to half
conversion. Even extrapolation of our equation for �
=550 K, where our nucleation and growth mechanisms may
not be operative, gives good agreement �Fig. 1� with a laser
heating experiment.25 Parameters Z and c0 can be varied in
order to achieve the best correspondence between predicted
and experimental shape of the c�t� curves. However, this
degree of freedom is not necessary. We did not change our
virtual melting based growth model11 and retain the value of
the parameter Z=7�10−13; that gives us c0=0.016 for the

concentration of the operational nucleus. All kinetic param-
eters are summarized in Table II in Ref. 12. Figure 2 exhibits
a very good correspondence between kinetic curves pre-
dicted by Eq. �23� and experiment. Note that extrapolation to
a wider range of parameters �pressure and temperature� is
much more reliable for the present physical model than for
the phenomenological model in Ref. 11 �see Sec. IV in Ref.
12�.

Note that for diffusional PTs t̄0 /� in Eq. �22� has to be
presented in the form t̂ exp�Qsd /k��, where Qsd is the activa-
tion energy of self-diffusion23 �the same is valid for Eq.
�10��. However, this does not change our model because of
the much stronger temperature dependence of t0 due to En. In
the narrow temperature range where t0 is greater than or
comparable with propagation time, both equations give very
close results. At higher temperatures, t0 is negligible in Eq.
�24�. That is also why we are unable to determine Qsd with
reasonable accuracy.

B. Nucleation under variable temperature and
pressure

If temperature and pressure are variable, the nucleation
time t0 has to be evaluated starting with the instant when the
PT criterion is met. Since we will consider only relatively
slow loading and changes in temperature and pressure that
are small during the nucleation time, we will use Eq. �21�
substituting in it the values of temperature and pressure at
time t0, i.e., ��t0� and p�t0 ,c0�,

FIG. 1. A comparison of the predictions of Eq. �24� �solid line� with experi-
mental data. The logarithm of the time to half conversion vs 1000 /��K� for
�→� PT in the HMX based plastic bonded explosive PBX 9501. Squares
are data from measurements made by second harmonic generation �Refs. 2
and 3�; the triangle is the conversion half time measured during laser heating
�Ref. 25�.

FIG. 2. A comparison between prediction of Eq. �23� �solid curves� with
experimental data for �→� PT in the HMX based plastic bonded explosive
PBX 9501 �Refs. 2 and 3� under isothermal conditions. The volume fraction
of the � phase c is equal to square root of the measured second harmonic
generation intensity from the HMX � phase. The zero of time is the point at
which the heated sample reached the labeled isothermal temperature.
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t0 =
t̄0

��t0�

�exp� 16�M2�	3

3��s�→����t0� − �e� − p�t0,c0��v�−�
2�h
2k��t0�� .

�26�

This nonlinear algebraic equation has to be solved numeri-
cally for t0. Note that the appearance of operational nuclei
with c0=0.016 causes an instantaneous pressure change. This
has to be defined from the solution of the mechanical prob-
lem and taken into account in p�t0 ,c0� in Eq. �26�.

In the problem considered in Sec. VII and in Ref. 12 a
constant temperature rate, hr, is prescribed and pressure,
p���, is determined as a function of � from the solution of the
mechanical problem. First, the mechanical problem without
PT is solved and temperature �i at which PT criterion is met
is determined from the nonlinear equation �s�→���i−�e�
= p��i��v�−�. Since �b

m=�N
m, we can express time in terms of

�, i.e., t= ��−�i� /hr and use temperature as an independent
variable. Then introducing the constant c=c0 in the mechani-
cal problem and expressing the solution p�t ,c0� in terms of
temperature, we can determine the nucleation temperature,
�0, from the equation

�0 − �i

hr
=

t̄0

�0

�exp� 16�M2�	3

3��s�→���0 − �e� − p��0,c0��v�−��2�h
2k�0

� .

�27�

Kinetic curves for the �→� PT for zero pressure and various
heating rates are shown in Fig. 3. Note that the nucleation
temperature varies in a very narrow range from 432.86 K for
hr=0.1 K /min to 433.0 K for hr=20 K /min. Despite the
fact that the nucleation time at isothermal conditions of
432.86 K is 566 s and at 433.0 K is 3 s, multiplication of
each of these times by the corresponding heating rate gives
approximately the same temperature increment of 1 K. Thus,
the main difference in the kinetic curves for different heating
rates is due to the temperature dependence of the growth
stage.

VI. CONTINUUM MECHANICAL MODEL FOR A
COMPOSITE CONSISTING OF CRYSTALLINE HMX
EMBEDDED IN A BINDER AND ALLOWING
FOR PHASE TRANSFORMATION AND CHEMICAL
DECOMPOSITION

The PBX 9501 formulation consists of HMX and binder.
The binder consists of Estane and nitroplasticizer �equal
masses� as well as of 0.1% of an antioxidant �which we will
neglect�. The initial mass fraction of HMX, nitroplasticizer,
and Estane are �0h=0.95, �0N=0.025, and �0E=0.025, re-
spectively. In designations of the concentrations of various
components, we will use � for mass fractions and f for vol-
ume fractions. No extra subscripts will be used for volume
fractions with respect to void-free PBX, a subscript “v” will
be utilized for volume fractions with respect to PBX with
voids and a subscript “0” for a initial value. The mass den-
sities of HMX, nitroplasticizer, and Estane are �h

=1905 kg /m3, �N=1390 kg /m3, and �E=1190 kg /m3, re-
spectively. The mass density of any composite can be deter-
mined by the equation �= ��

i
f i /�i�−1. Thus, the mass density

of the binder and void-free PBX are �b=1282 kg /m3 and
�P=1860 kg /m3. The mass density of PBX containing a
volume fraction fv of voids �with respect to total PBX plus
void volume� is �Pv=�P�1− fv� and is equal to 1832
−1823 kg /m3 for fv=0.015−0.02. The volume fractions of
components with respect to a void free material can be de-
termined by equation

fk = �k�P/�k, k = 1,2,3, �28�

and are equal initially to f0h=0.928, f0N=0.033, f0E=0.039,
and f0b=f0N+ f0E=0.072 for HMX, nitroplasticizer, Estane,
and binder. Adding a volume fraction of voids, fv, changes
the volume fraction with respect to porous material to

fkv = fk�1 − fv� , k = 1,2,3. �29�

Summation of all fkv gives 1− fv. For example, for initial
f0v=0.015 we obtain f0hv=0.913, f0Nv=0.033, and f0Ev
=0.039. The melting temperature of Estane is 350 K and the
melting temperature of nitroplasticizer is �377 K. In the
temperature range of PT ��
432 K�, the shear modulus of
the binder, �b, has to be equal to zero; however, for gener-
ality, we will first consider a small but nonzero �b. Also,
nitroplasticizer decomposes and disappears with time in the
temperature range of 360−520 K �heating rate 0.5
−10 K /min� and Estane decomposes and disappears at tem-
perature above 520 K. HMX decomposes at temperature
above 453 K.

A. Geometrically linear theory

In the process of PT in HMX and chemical decomposi-
tion of the binder, finite ��0.1� and large ��0.1� strains are
involved. In particular, transformation plus thermal strain in
HMX may reach 0.1 and strain due to mass loss of the ni-
troplasticizer may reach 0.5. Thus, a geometrically nonlinear
theory is necessary. We will approach this problem in two
steps. First, we show based on geometrically linear theory
that the effect of the shear modulus of the binder and internal
stresses between the HMX and the binder can be neglected,

FIG. 3. Evolution of the volume fraction of the � phase based on solution of
Eqs. �19�, �20�, and �27� under zero pressure and various heating rates
�shown in K /min near the curves�.
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i.e., the composite can be considered as a hydrostatic me-
dium. This simplification allows us to develop an exact geo-
metrically nonlinear theory.

The effective bulk modulus of the composite, Kc, can be
determined using the methods described in Ref. 26. In par-
ticular, both polydisperse and three phase models give the
same expression

Kc = Kb +
f�Kh − Kb�

1 +
�1−f��Kh−Kb�

Kb+4�b/3

, �30�

where Kh and Kb are the bulk moduli of HMX crystal and
binder and f is the volume fraction of the HMX crystals;
voids are included in inelastic damage strains. If we decom-
pose this expression in a Taylor series in �b, then the second
term is proportional to �1− f��b, i.e., is negligible due to
small �1− f� and �b. The first term is

Kc = � f

Kh
+

1 − f

Kb
�−1

, �31�

which corresponds to a volume averaging of the bulk com-
pliances �the Reuss scheme�.

To find a pressure-volume relationship for the composite
and pressure in HMX crystals �which we need to use in the
PT kinetics� we will use the following simple model: a
spherical inclusion of radius r of HMX crystal within a
spherical layer of the binder �external radius re� under exter-
nal pressure p, f = �r /re�3. Because of the small shear modu-
lus and concentration of the binder, it acts almost like a liq-
uid and the specific shape is not important. The pressure
p-volumetric strain � relations for each phase are assumed to
be in the form of Hooke’s law

ph = − Kh��h − �h
i � , pb = − Kb��b − �b

i � , �32�

where �h
i and �b

i are inelastic deformations in the HMX and
the binder which include thermal, transformational, and dam-
age �due to porosity� parts. The minus sign in Eq. �32� is
used because we consider the tensile strains and compressive
pressure as positive. Taking into account the continuity of
displacements and radial stresses across the HMX-binder in-
terface and borrowing the well-known solution of the corre-
sponding elastic problem �see e.g., Ref. 27�, we obtain

ph = pKh�3Kb + 4�b�/L + 4��h
i − �b

i ��1 − f�KhKb�b/L ,

�33�

� = − p�3�1 − f�Kh + 3fKb + 4�b�/L + ��b
i �1 − f�

�Kb�3Kh + 4�b� + �h
i fKh�3Kb + 4�b��/L ,

L: = 4f�Kh − Kb��b + Kb�4�b + 3Kh� . �34�

In Eq. �33� pressure in the HMX crystal consists of
terms proportional to the external pressure and internal
stresses. Although the jump in strain due to PT in HMX
�hi−�bi is large ��0.08�, multiplication by two small terms
�1− f��b makes the internal stresses negligible. Using the
Taylor series in �b for the first term results in

ph = p	1 +
4�Kh − Kb��1 − f��b

3KhKb

 , �35�

where the second term is again negligible due to small �1
− f��b. Thus, ph= p is a good approximation even for small
but nonzero �1− f��b. This means that when the external
pressure is prescribed, the thermodynamics and kinetics of
�→� PT in PBX 9501 can be considered using the applied
pressure p, like for HMX crystals without a binder. Expand-
ing Eq. �34� in a Taylor series in �b, one obtains

� = − p	� f

Kh
+

1 − f

Kb
� −

4�Kh − Kb�2f�1 − f��b

3Kh
2Kb

2 

+ �f�h

i + �1 − f��b
i � +

4��h
i − �b

i ��Kh − Kb�f�1 − f��b

3KhKb
.

�36�

Neglecting the terms with �1− f��b results in a final expres-
sion

� = − p� f

Kh
+

1 − f

Kb
� + �f�h

i + �1 − f��b
i � �37�

with simple volume averaging of bulk compliances and in-
elastic strains.

B. Geometrically nonlinear theory

We will now consider the following problem �Fig. 4�.
Let the cylindrical PBX sample be placed into a rigid cylin-
der and an initial macroscopic compressive strain �0 be pre-
scribed by the piston motion. Then the sample is homoge-
neously heated with the heating rate hr during which �0 is
kept constant. Pressure increases due to the thermal expan-
sion. In the temperature range 350−370 K, the nitroplasti-
cizer and Estane melt. All initial voids are filled immediately
by the binder as soon as it melts and any external pressure is
applied. The mass of the gas in the initial voids will be
neglected. We will determine the pressure change and its
effect on the �→� PT after the melting of the binder only.
We will consider the simultaneous occurrence of the �→�

FIG. 4. Scheme of the PBX formulation heated in a rigid cylinder �a� in
initial state and �b� during the heating and occurring all thermomecha-
nochemical processes. It is assumed that the molten binder fills immediately
all voids. HMX crystals are under hydrostatic pressure imposed by the mol-
ten Estane and nitroplasticizer and gas.
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PT and chemical decomposition of the nitroplasticizer and
HMX. The gas which appears due to the binder and HMX
decomposition partially disappears due to the leaking from
the cylinder and partially remains as a new phase. It fills the
voids that are created by decomposition of the binder and
HMX and the initial voids that may still be left after melting
of the binder and thermal expansion. We will neglect the
closed voids inside the HMX that are not accessible by the
molten binder or gas.

We neglect the nonhydrostatic stresses in the binder and
the resulting hydrostatic stresses in HMX crystals embedded
in the binder. Since pressure and temperature are homoge-
neous, the problem of developing a constitutive model for
the PBX and consideration of deformation of the PBX in the
cylinder are the same. The main challenge is to correctly take
into account the large deformations due to chemical decom-
position of the binder and HMX and change in gas volume,
as well as finite elastic deformation of the binder and the
transformation and thermal strain in the HMX. Special atten-
tion has to be paid to the large strain due to chemical decom-
position in the binder and HMX and the change in gas vol-
ume because they also change the mass and volume fraction
of the phases. Also, the large elastic strain of the binder and
transformation strain of the HMX change the volume frac-
tion of the phases. All these points have to be carefully taken
into account by a strict geometrically nonlinear �large strain�
formulation. A general geometrically nonlinear kinematic ap-
proach to the thermomechanical processes with several strain
components can be found in Refs. 28 and 29. We will gen-
eralize them for the case with mass loss and specify them for
the pure volumetric strain.

Let us consider volumetric strains of crystalline HMX
under applied pressure and heating when accompanied by
PT, chemical decomposition, thermal, and elastic stresses. If
the initial stress-free volume at initial temperature �in

=300 K is Vh
0 �the subscript h designates HMX� and the

volume at some instant t of thermomechanical loading is Vh,
we can define the volumetric deformation gradient �one di-
mensional� Fh=Vh /Vh

0 and volumetric strain �h=Fh−1. We
can introduce components of the deformation gradient: Fh

m

=Vh
m /Vh

0 due to the mass loss during the chemical decompo-
sition, where Vh

m is the stress-free volume at temperature �in

after the mass loss at time t; the transformation deformation
gradient Fh

t =Vh
t /Vh

m=1.08 which transforms the volume Vh
m

of the � phase to the volume Vh
t of the � phase; the thermal

deformation gradient Fh
�=Vh

� /Vh
t , where Vh

� is the stress-free
volume at current temperature �; and the elastic deformation
gradient Fh

e =Vh /Vh
� which characterizes the elastic deforma-

tion due to external pressure. Each strain component is de-
termined through the corresponding deformation gradient us-
ing the same equation as for the total strain

�h
m = Fh

m − 1, �h
t = Fh

t − 1, �h
� = Fh

� − 1, �h
e = Fh

e − 1.

�38�

Since

Fh =
Vh

Vh
0 =

Vh

Vh
�

Vh
�

Vh
t

Vh
t

Vh
m

Vh
m

Vh
0 , �39�

one obtains the multiplicative decomposition

Fh = Fh
eFh

�Fh
t Fh

m. �40�

Note that in one dimension the sequence of the terms in
Eq. �40� is not important. Substituting expressions for defor-
mation gradients in terms of corresponding strains, we have

1 + �h = �1 + �h
e��1 + �h

���1 + �h
t ��1 + �h

m� . �41�

Equation �41� transforms to the usual additive decomposition
of strain only for the case when all strain components are
small in comparison with 1,

�h � �h
e + �h

� + �h
t + �h

m. �42�

Similar definitions and decompositions are valid for the
deformation gradient in a binder �with �b

t =0� and for the
composite. At the initial �before straining� and the current
time instant we have the following expressions for the vol-
ume of composite:

V0 = V0h + V0b + V0v, V = Vh + Vb + Vg, �43�

where V0v is the initial volume of voids in the PBX and Vg is
the volume of gas which remains in the cylinder. Dividing
the second Eq. �43� by V0, we obtain for the deformation
gradient of a composite

F =
Vh

V0h

V0h

V0
+

Vb

V0b

V0b

V0
+

Vg

V0v

V0v

V0

= Fhf0hv + Fbf0bv + Fgf0v

= �Fhf0h + Fbf0b��1 − f0v� + Fgf0v, �44�

where Fg=Vg /V0v is the deformation gradient of the gas with
respect to the initial volume of voids V0v, and the initial
volume fractions of the HMX and binder with respect to
void-free PBX, f0h and f0b, are related to the initial volume
fractions with respect to porous PBX f0hv and f0hv by Eq.
�29�: f0hv= f0h�1− f0v� and f0bv= f0b�1− f0v�. The term 1− f0v
in Eq. �44� can be considered as the deformation gradient
�and −f0v as the corresponding strain� which transforms ini-
tially porous PBX to void free PBX. Equations �40� �and a
similar equation for the binder� and �44� are the main and
exact kinematic relationships for our model. Note that all
volume fractions in Eq. �44� correspond to initial states and
are constants. Strains due to the chemical decomposition of
the HMX and binder as well as due to gas accumulation in
the cylinder are fully taken into account in Fh

m, Fb
m, and Fg.

In order to complete the model of PBX thermomechani-
cal behavior, we will now describe all strain components of
the HMX and binder. The elastic strain is determined by the
Hooke’s law

�h
e = − p/Kh, �b

e = − p/Kb, �45�

where Kh=15 GPa �Refs. 14 and 15� and Kb=3.65 GPa.30

The thermal expansion strain for HMX is

�h
� = c��

� + �1 − c���
� = ��

� + c���
� − ��

�� , �46�
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��
� = 13.1 � 10−5�� − 300� , ��

� − ��
� = 0.4 � 10−5�� − 432� ,

�47�

where thermal expansion coefficients are taken from Ref. 19
and the change in thermal expansion strain at phase equilib-
rium temperature is zero because it is taken into account in
the transformation strain �t=0.08. The thermal expansion co-
efficients for the binder are unknown and we will take �b

�

=6�10−5��−300�. This indeterminacy is not critical be-
cause the thermal strain is negligible in comparison with the
strain due to the binder decomposition.

VII. MODELS FOR CHEMICAL DECOMPOSITION OF
THE HMX AND BINDER AND GAS LEAKING

One of the most advanced kinetic models for HMX de-
composition was presented in Refs. 31 and 32. It was
coupled to mechanical equations and used in Ref. 33 to
model thermal explosion. The kinetic model includes four
steps: �1� �→� PT, �2� decomposition of � phase in solid
state �initial ring- and bond-breaking steps�, �3� decomposi-
tion of solid intermediates into gaseous intermediates
�CH2O,N2O,HCN,HNO2, etc.�, and �4� decomposition of
gaseous intermediates into final product �CO2,H2O,N2,CO,
etc.�. Decomposition of various binders was modeled by
single-step first-order Arrhenius kinetics. The goal of the ear-
lier papers was to describe experiments on time to thermal
explosion. Several decomposition models have been ana-
lyzed and compared in Ref. 5. Again, calibration of material
parameters was based on comparison with experimental data
on time to thermal explosion and temperature. Our goal is
completely different: to describe the kinetics of �↔� PTs
under complex pressure-temperature paths. In these paths,
temperature variation is prescribed and pressure is deter-
mined from the solution of the mechanical problem in which
chemical decomposition, gas leaking, and mechanical strains
are taken into account. For our problem, we do not need to
take into account heat of all reactions because temperature
evolution is prescribed. We need to consider only processes
which affect the pressure variation. Thus, the step �2� can be
neglected because it changes the mechanical properties of the
� phase only, but these changes are unknown. The step �4�
can be neglected as well, since it changes the equation of
state of the gaseous mixture, which is also quite
hypothetical.33 Since step �1� is described in this paper by
physically based kinetics which is much more precise, we
need to describe step �3� of HMX decomposition and find
kinetic parameters in first-order Arrhenius equation for nitro-
plasticizer and Estane decomposition with emphases on mass
loss rather than heat of reaction. That is why we will use here
our kinetic data from Refs. 34 and 35 that were obtain in the
following way. First, parameters in kinetic Eqs. �48� and �49�
for decomposition of nitroplasticizer and Estane are deter-
mined to fit thermogravimetric data �i.e., mass loss� in Refs.
34 and 35 �Fig. 5�. Note that in Ref. 34, two-step kinetic
equations are used but we do not need the kinetics of decom-
position of the gaseous intermediates of nitroplasticizer into
final product gases �similar to step �4� for HMX� because the
difference in equation of state for them is not well known.

Then parameters of the second-order kinetic Eq. �52� are
determined from the condition that in combination with Eqs.
�48� and �49� for binder decomposition, it fits thermogravi-
metric data for PBX 9501 in Refs. 34 and 35 �Fig. 6�.

A. Chemical decomposition of the nitroplasticizer and
Estane and corresponding strains

Kinetic equations for nitroplasticizer and Estane decom-
position are given below34,35

�̇N/b = − kN�N/b, kN = exp�14.30�exp�−
80000

R�
� , �48�

�̇E/b = − kN�E/b, kE = exp�16.52�exp�−
120500

R�
� . �49�

Here �N/b and �E/b are the mass fractions of the nitroplasti-
cizer and Estane with respect to the initial total mass of the
binder; their initial values are �N/b�0�=�E/b�0�=0.5; time is
measured in seconds. The strains in the nitroplasticizer, Es-

FIG. 5. �Color online� Thermogravimetric analysis �TGA� data to measure
solid mass loss from binder components nitroplasticizer and Estane in a
50:50 mixture by mass �solid lines� �Ref. 35�. The TGA data were obtained
in an open platinum pan using an INSTRUMENTX for five different tem-
perature ramp rates. Dashed lines represent results of simulation based on
Eqs. �48� and �49�.

FIG. 6. Isothermal thermogravimetric analysis data �solid lines� to measure
solid mass loss from PBX 9501, i.e., combined mass loss from the binder
and HMX. Dashed lines represent results of simulation based on Eqs. �48�,
�49�, and �52�.
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tane, and binder due to mass loss during the chemical de-
composition are

�N
m = �0.5 − �N/b��b/�N, �E

m = �0.5 − �E/b��b/�E,

�b
m = �N

m + �E
m. �50�

Indeed, �N
m : =�VN /Vb= ��N�VN /�bVb���b /�N�= ��mN /mb�

���b /�N�= �0.5−�N/b���b /�N�, where �VN and �mN are the
volume and mass loss of the nitroplasticizer due to chemical
decomposition. A similar equation is valid for the Estane.
Also, �b

m= ��VN+�Vb� /Vb=�N
m+�E

m.
Kinetic Eqs. �48� and �49� adequately reproduce the ex-

perimental data in Ref. 35 �Fig. 5�. Since decomposition of
the Estane is important above 520 K only, which is above the
temperature range of interest, we will neglect it and use �b

m

=�N
m. At constant heating rate, hr and �=�in+hrt, Eq. �48� can

be integrated in the closed form

�N/b = �N/b��in�exp� A

hr
	exp�−

B

�in
�� − exp�−

B

�
��

+ BEi�−
B

�in
� − BEi�−

B

�
�
� , �51�

where A=exp�14.3�=1.623�106, B=80 000 /R=9622.5 K,
hr is measured in K /s and Ei�z�=−�−z

� e−t / tdt �z
0� is the
exponential integral function. Note that in calculations we
use �N/b��in�=0.500001 to avoid the numerical problems re-
lated to zero strains at �in. A similar equation is valid for
�E/b.

B. Chemical decomposition of the HMX and
corresponding strain

The kinetics of HMX decomposition into gas product
can be described by the following equation:34,35

ḟ hv = − khfhv�1 − fhv�h/�Pv� ,

kh = 3.769 � 109� exp�− 150 000

R�
� ,

fhv�0� = f0hv = 0.95�1 − f0v��P/�h, �h
m = fhv/f0hv − 1 � 0,

�52�

where fhv is the current volume fraction of the HMX �re-
maining unloaded volume of the HMX divided by the initial
unloaded volume of the PBX�, �h=1905 kg /m3 and �Pv
=�P�1− f0v� are the initial mass densities of HMX and PBX;
the initial volume fraction of HMX, f0hv, is determined using
Eqs. �28� and �29�: f0hv=�0h�1− f0v��P /�h. For f0v=0.015
−0.02 we obtain �Pv=1832−1823 kg /m3 and �h /�Pv
=1.039−1.045. The solution of Eq. �52� is in good agree-
ment with our experimental data. Also, the solution of a
combination of Eqs. �50� and �52� describes our experimen-
tal data on the combined mass loss of the HMX and the
binder well �Fig. 6�.

C. Equation of state of a gas phase

We will assume in the first approximation that gas which
appears due to decomposition of the nitroplasticizer and
HMX can be described by the ideal gas equation of state and
that the volume of both gases is additive �Amagat–Leduc
law36�

Vg = Vgh + Vgb = � mgh

Mgh
+

mgb

Mgb
�R�

p
, �53�

where Vgh and Vgb are the partial volumes of gas product due
to decomposition of the HMX and nitroplasticizer, mgh and
mgb are the corresponding masses, and Mgh and Mgb are the
corresponding molecular masses. We will assume Mgh

=Mgb=0.037 kg /mol. For HMX, it is based on the average
of the molecular masses of CH2O and N2O which are typical
decomposition intermediates. Expressing masses of gases in
terms of mass fractions, �gh and �gb, with respect to initial
mass of PBX, m, i.e., mgh=�ghm and mgb=�gbm, we obtain
for the deformation gradient of the gas

Fg =
Vg

V0v
= � �gh

Mgh
+

�gb

Mgb
�R�m

pV0v
, �54�

Since m=�PvV0=�P�1− f0v�V0=�P�1− f0v�V0v / f0v, then

Fgf0v =
Q

p
�1 − f0v� , Q = � �gh

Mgh
+

�gb

Mgb
�R��P. �55�

D. Gas leaking rule

We will use the following equation for the gas leaking
from the cylinder:

�̇g
− = 0 for p � ps,

�̇g
− = 2.25lJ�p − ps� for ps 
 p � 1.8ps,

�̇g
− = lJp for p � 1.8ps,

J = �g/f* for 0 � �g � f*, J = 1 for �g 
 f*.

�56�

Here �g
− is the mass fraction of the gas �relative to the initial

mass of the PBX� which leaked from the cylinder, �g=�gh

+�gb is the current mass fraction of the gas in the cylinder,
ps is the threshold pressure of the gas above which leaking is
possible, l is the choked leak rate coefficient, and J is a
function described later. The leaking is absent if pressure is
below the threshold value ps that depends on the sealing
system. At higher pressure, the leak rate is proportional to
the overpressure p− ps. If the pressure is higher than 1.8ps,
then the leak rate is independent of the threshold ps and is
proportional to p. Factor 2.25 for the coefficient l is obtained
from the continuity of the �̇g

− for p=1.8ps. This equation is
motivated by a one-dimensional isentropic analysis of ideal
gas flow: the mass flow rate is independent of the pressure
outside the system as long as p / ps
1.8.

Without the function J, Eq. �56� exhibits leaking even if
there is no gas in a cylinder �i.e., �g=0� since pressure can
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be higher than ps; recall that we assume the same pressure in
the gas and solid. The simplest way to avoid this is to put
J=0 for �g=0 and J=1 for �g
0. However, in this case J
�and consequently the rate of leaking� experiences multiple
jumps between 0 and 1 during numerical solution of Eq. �56�
which depends on the parameters and the numerical meth-
ods. To avoid this, we use a better expression for J: J varies
linearly from 0 to 1 in a small interval of 0��g� f* �e.g.,
f*=10−3−10−4� and then remains equal to 1. Such a function
not only regularizes the numerical procedure but also mimics
real physics that for a small amount of gas in the cylinder,
pressure in gas can be much smaller than in the solid and
disappears when gas disappears.

E. Mass fraction of gas in a cylinder

The total mass fraction of gas in the cylinder, �g, is the
difference between the gas input due to HMX and nitroplas-
ticizer decomposition �see Eqs. �48� and �52�� and the gas
loss due to leaking, i.e.,

�g = 0.5�Lg + �Lg�� = �gb + �gh, �57�

Lg: = �0.5 − �N/b�0.05 + 	0.95 −
fhv�h

�P�1 − f0v�
 − �g
−. �58�

It is easy to show that fhv�h /�P�1− f0v� is the current
mass fraction of HMX: according to Eqs. �28� and �29�, �h

=�hfh /�P= fhv�h /�P�1− f0v�. Equation �57� guarantees the
nonnegativity of �g when Lg is getting formally negative due
to intensive gas leak. To decompose �g into �gh and �gb, we
assume that gas product of the nitroplasticizer and HMX leak
in the same proportion as they are produced, i.e.,

�gb = �g
�0.5 − �N/b�0.05

�0.5 − �N/b�0.05 + �0.95 − �fhv�h�/��P�1 − f0v��

,

�59�

�gh = �g
0.95 − �fhv�h�/��P�1 − f0v��

�0.5 − �N/b�0.05 + �0.95 − �fhv�h�/��P�1 − f0v��

.

�60�

For the case Mgh=Mgb, one gets Q= ��g /Mgh�R��P and
there is no need to separate �g into �gh and �gb and using
Eqs. �59� and �60�.

F. Pressure evolution in a cylinder

We will consider the following problem. Let the cylin-
drical PBX sample be placed into a rigid cylinder and an
initial macroscopic compressive strain �0=F0−1
0 be pre-
scribed by the piston motion �Fig. 4�. Then the sample is
homogeneously heated at the heating rate hr during which �0

is kept constant. During the heating, the following processes
occur: thermal expansion, binder melting, chemical decom-
position of the binder and HMX, �→� PT, gas leak, and
elastic straining.

Pressure can be determined from Eq. �44� after substitu-
tion of the multiplicative decomposition of Fh �Eqs. �40� and
�41�� and similar equation for Fb, Eq. �55� for Fgf0v, as well
as F=F0 and Hooke’s law Eq. �45�,

F0 = ��1 − p/Kh�Fhi + �1 − p/Kb�Fbi + Q/p��1 − f0v� ,

Fhi = Fh
�Fh

t Fh
mf0h, Fbi = Fb

�Fb
mf0b, �61�

where Fhi and Fbi are inelastic deformation gradients in the
HMX and the binder. Solving Eq. �61� for p one obtains

p =
HKbKh + �H2Kb

2Kh
2 + 4QS

2S
, S = FhiKb + FbiKh,

H = Fhi + Fbi − F0/�1 − f0v� . �62�

It is clear that prestraining F0 and the porosity 1− f0v con-
tribute to the pressure through the combination F0 / �1− f0v�
�1+�0+ f0v. Since �0 and f0v have different signs, they par-
tially or completely compensate each other. If one considers
�0 as variable strain, then Eq. �62� represents a volumetric
strain-pressure equation of state for the composite material
under consideration.

VIII. CONCLUDING REMARKS

The main results of this paper are:

�a� Elaborating a suggested nucleation mechanism for the
�→� PT in the energetic crystal HMX in the presence
of a liquid binder.

�b� Development of the fully physical model for the over-
all kinetics of the �↔� PTs for complex pressure-
temperature paths based on the earlier nucleation
mechanism and the growth mechanism via the virtual
melting.

�c� Development of simple phenomenological models for
the HMX, nitroplasticizer, and Estane chemical decom-
position and gas leaking.

�d� Development of the coupled thermomechanochemical
model for a composite consisting of crystalline HMX
embedded in a binder �PBX formulation� under ther-
momechanical loading. It takes into account all the ear-
lier mentioned processes and an exact large strain
kinematics.

Numerical analysis of the heating of PBX 9501 inside of
a rigid cylinder based on the developed model will be pre-
sented in the accompanying paper.12 The effect of the heating
rate, initial porosity, and prestraining, HMX and binder de-
composition and gas leaking rule on the kinetics of the �↔�
PT and pressure buildup will be analyzed numerically.
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