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A finite element approach is suggested for the modeling of the dynamics of multivariant
martensitic phase transitions �PTs� in elastic materials at the nanoscale in the three dimensional
�3D� case. The model consists of a coupled system of the Ginzburg–Landau equations for
transformation strain-related order parameters and dynamic elasticity equations. Thermodynamic
potential �V. Levitas and D. Preston, Phys. Rev. B 66, 134206 �2002�� that captures the main
features of macroscopic stress-strain curves is used. The evolution of multivariant microstructure in
a 3D specimen for cubic to tetragonal PT in a NiAl alloy is modeled with dynamic and static
formulations. The numerical results show the significant influence of inertial forces on
microstructure evolution. © 2008 American Institute of Physics. �DOI: 10.1063/1.2955514�

For the simulation of microstructure evolution during
martensitic �diffusionless first-order� PT at the nanoscale,
phase field or Ginzburg–Landau approaches are used �see
Refs. 1–10�. The papers based on these techniques differ in
the choice of �a� the order parameters �selected strain com-
ponents or transformation strain-related variables� that de-
scribe the evolution of each martensitic variant; �b� thermo-
dynamic potential; �c� total number of equations �additional
kinetic equations for the order parameters are introduced if
the order parameters are the transformation strain-related
variables�; �d� variables, the rate of which determines the
dissipation rate; �e� elastostatic or elastodynamic formula-
tions, and �g� numerical approaches. In all the papers,1–10

spectral methods were used for numerical simulations of the
microstructure evolution. In Refs. 9 and 10, the dynamic
formulation with inertial forces suggested in Refs. 5 and 6
was applied for the simulation of two dimensional and three
dimensional �3D� microstructures at phase transition �PT�.
Theories in Refs. 5, 6, 9, and 10 are based on the order
parameters consisting of the selected strain components with
a Rayleigh dissipative function expressed in terms of strain
rates. Such an approach results in the appearance of viscous
stresses and viscoelastic constitutive equations. We are not
aware of simulations based on dynamic formulations for the
transformation strain-related order parameters.

Recently, we made several steps toward more realistic
modeling of stress-induced martensitic transformations.
Some of these steps are independent of the development in
the current paper. �1� Surface effect was studied in Ref. 11.
�2� A thermal resistance to the interface propagation was in-
troduced in Ref. 12. �3� The phase-field approach was ex-
tended for the microscale in Refs. 13 and 14. More impor-
tantly, an advanced thermodynamic potential was
developed15,16 that can describe the typical stress-strain
curves observed experimentally, all the temperature-
dependent thermomechanical properties of austenite and
martensitic variants, and PT between austenite and martensi-
tic variants, and between martensitic variants with arbitrary
types of symmetry. The potential was based on the transfor-
mation strain-related order parameters.

In the paper we suggest a phase-field approach for mar-
tensitic PT that has the following features.

• The advanced expression for the free energy suggested
in Refs. 15 and 16 is used, which in contrast to known
approaches,1–10 correctly describes the main experimental
features of stress-induced PT.

• The elastodynamics equations are used which has not been
done before for theories based on transformation strain-
related order parameters.

• Dissipation rate is determined by the rate of the order pa-
rameters, which results in the time-dependent Ginzburg–
Landau �TDGL� equations; viscous stresses are not used.

• A finite element approach to the solution of the 3D-
coupled elastodynamics and TDGL equations is developed.
Since the equations for the order parameters are similar to
the heat transfer equation, the total system of equations for
the modeling of PT is similar to the system of coupled
thermoelasticity and heat transfer equations.

Based on the phase-field approach developed, the simu-
lation of microstructure evolution for cubic-tetragonal mar-
tensitic PT in a NiAl alloy is presented for statics �without
inertial forces� and dynamics �with inertial forces� in the 3D
case. The numerical results show the very significant influ-
ence of inertial effects on microstructure evolution, even for
the traditional problem on relaxation of initial perturbations
to stationary microstructure.

Multivariant martensitic microstructure may consist of
austenite and n martensitic variants, and can be represented
in terms of the distribution of n order parameters �k �k
=1,2 , . . . ,n�. The order parameters �k in the current ap-
proach vary from zero to unity, where �k=1 corresponds to
the kth martensitic variant and �i=0 for all i corresponds to
austenite. The following system of equations is used for the
modeling of martensitic PT at nanoscale: relationship be-
tween strains �ij and displacements ui

�ij = 0.5�ui,j + uj,i� , �1�

Hooke’s law

�mk = = − �G/��mk = �ijmk�ij + �mk
t , �2�

equations of motion

�ij,i = �üj , �3�

and the Ginzburg–Landau kinetic equationsa�Electronic mail: alexander.idesman@coe.ttu.edu.
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where �ij
t ��k� is the transformation strain tensor, �ij is the

stress tensor, �ijmn is the elastic compliance tensor, � is the
mass density, L and � are the material parameters, G is the

thermodynamic potential, Ḡ=G+0.5��n,i�n,i, and � /��k is
the variational derivative.

One of the critical points of the theory is the choice of
the thermodynamic potential G. We will use the following
potential G��mn ,� ,�i� suggested in Ref. 15, which captures
the main features of macroscopic stress-strain curves and
meets the experimental data:

G = − �ij�ijmn�mk − �mk�mk
t + �

k=1

n

�A�k
2 + �4	G� − 2A��k

3

+ �A − 3	G���k
4� + F��1,�2, . . . ,�n� , �5�
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4� , �6�

where

	G� = A0�� − �e�/3, A = A0�� − �c�/3, �7�

F��1,�2, . . . ,�n� = �
i=1

n−1

�
j=i+1

n

Fij��i,� j� , �8�

Fij = �i� j�1 − �i − � j��B���i − � j�2 − �i − � j� + D�i� j	

+ �i
2� j

2��iZij + � jZji� , �9�

Zij = Ā − A + �mk��a − 3��̄mk
j + 3�̄mk

i � . �10�

Here �e, �c, a, A0, Ā, B, D are material parameters, � is the
temperature, and �̄mk

i �i=1,2 , . . . ,n� is the transformation
strain tensor for the ith martensitic variant �known from crys-
tallography�. A temperature evolution equation can be easily
added and treated �since the heat transfer equation has a
structure similar to that of Eq.�4��. However, to focus on the
effect of advanced potential �Eq.�5��, inertia �Eq. �3��, and
the finite element approach, we assume isothermal approxi-
mation �as in all previous works1–14�.

Let us analyze a system of Eqs.�1�–�4�. Equations
�1�–�3� resemble standard elastodynamics equations if the
transformation strain �mk

t is treated as the thermal strain.
Equation �4� is similar to nonstationary heat transfer equa-
tions. For n=1, we have an analog of a standard system of
coupled heat transfer and elastodynamics equations. For
n
1, we have a system similar to coupled n heat transfer
equations and elastodynamics equations. Coupling follows
from the fact that the transformation strain �mk

t in the elasto-
dynamics equations depends on the order parameters �i; and
the term �G /��i in Eq. �4� depends on the stress �mk. For
neglected inertial forces �i.e., �üj =0�, Eq. �3� reduces to the
mechanical equilibrium equation �the static formulation�.

To solve Eqs. �1�–�4�, the finite element method is used.
For the integration of the system of equations in time, the
total observation time is subdivided into N time steps with

the small time increments 	t. Then in order to find unknown
parameters at the end of each time step, we assume that �a�
for the kth Eq. �4�, the order parameters �m �m=1,2 ,k
−1,k+1, . . . ,n� and stresses are fixed and known from the
previous time step; �b� for Eqs. �1�–�3�, all order parameters
are fixed and known from the previous solution of Eqs. �4�.
These assumptions correspond to an explicit time integration
scheme and allow the decoupling of the system �Eqs.
�1�–�4�� at any small time step; i.e., any kth �Eq. �4�� and
system �Eqs. �1�–�3�� can be solved separately. For the solu-
tion to the kth �Eq. �4�� and system �Eqs. �1�–�3�� at any time
step, the finite element algorithms with an implicit time in-
tegration method for heat transfer problems and elasticity
problems are applied, respectively. The algorithm is imple-
mented into the finite element program “FEAP” �Ref. 17� for
the general 3D case. The finite element method is well de-
veloped for elasticity and heat transfer equations and can
easily be applied to complicated geometry, boundary and ini-
tial conditions, and heterogeneous materials.

Let us consider the modeling of microstructure for
cubic-tetragonal martensitic PT in a NiAl alloy with three
martensitic variants using the static formulation �without in-
ertial forces� and a more general dynamic formulation �with
inertial forces� in the 3D cases. A standard problem on relax-
ation of initial stochastic perturbations into stationary mar-
tensitic microstructure is solved to demonstrate the impor-
tance of inertia even for the case when not much is expected
�e.g., in contrast to shock loading�. The following material
parameters that adequately describe the stress-strain curve
for martensitic PT in a NiAl alloy are used �see Ref. 15�:
a=2.98; Ā=5320 MPa; �e=215 K; �c=−183 K; A0
=4.4 MPa /K; B=0; D=500 MPa; �=2.33�1011 N;
L=2596.5 m2 /N s; �̄11

1 =0.215; �̄22
1 =−0.078; �̄33

1 =−0.078;
�̄11

2 =−0.078; �̄22
2 =0.215; �̄33

2 =−0.078; �̄11
3 =−0.078;

�̄22
3 =−0.078; �̄33

3 =0.215; �̄ij
1 = �̄ij

2 = �̄ij
3 =0 for i� j;

E=198 300 MPa; �=0.33; and �=5850 kg /m3. Here E is
Young’s modulus and � is Poisson’s ratio �the elastic modu-
lus tensor C is assumed for simplicity to be isotropic and
phase independent�. A cubic specimen with dimension 25
�25�25 nm was considered. The initial conditions for the
system �Eqs. �1�–�4�� were as follows: �a� the initial random
distribution of the order parameters �1, �2, and �3 with val-
ues between 0 and 1 was given; �b� initial displacements and
velocities �for the dynamic case only� were zero for the
whole specimen; and �c� homogeneous initial stresses ��11

in

=�22
in =�33

in =2 GPa and �12
in =�23

in =�13
in =0� were applied to the

whole specimen for the promotion of PT. The boundary con-
ditions for the elastic problem �Eqs. �1�–�3�� were as follows:
un=0 and 
n=0, where un and 
n are the normal displace-
ments and the tangential stresses, respectively. The boundary
conditions for Eq. �4� were prescribed as zero fluxes
��i /�n=0 along the whole boundary of the specimen. We
also assumed the homogeneous temperature �=288 K,
which does not change during PT. The observation time t̃
=4.2�10−10 s at which the microstrucure became practically
stationary, was subdivided into 14 000 time steps. The evo-
lution of microstructures for the static and dynamic formula-
tions is shown in Fig. 1. Let us compare the solutions ob-
tained. The evolution rate of a microstructure for the static
formulation is much faster than that for the dynamic formu-
lation, e.g., as we can see from column 1 in Fig. 1, the
randomly distributed initial order parameters form micro-
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structure with several martensitic plates in the static formu-
lation at time t=1.5�1012 s. However, at the same time,
there is no martensitic microstructure for the dynamic formu-
lation, i.e., only intermediate values between 0 and 1 of the
order parameters occur in the whole specimen. Next, for the
static and dynamic formulations, the corresponding micro-
structures have different evolution histories. Finally, the mi-
crostructures at the final time considered are totally different;
see column 3 in Fig. 1.

Figure 2 shows the schematic of the martensitic micro-
structure for the dynamic case at the final time instant, which
contains all three martensitic variants in one picture. The
sample is divided into several regions consisting of two mar-
tensitic variants in twin relations. Planes between twin-
related variants are designated in Fig. 2 and coincide with
those determined from the crystallographic theory.

In summary, an advanced dynamics formulation for the
modeling of stress-induced martensitic PT is suggested. The
finite element approach is applied to the solution of 3D-
coupled elastodynamics and phase-field equations. The nu-
merical results show the essential effect of inertial forces on
the evolution and the formation of the final martensitic
microstructure.
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FIG. 1. �Color online� Evolution of microstructure in the 3D specimen.
Rows A–C and D–F are the evolution of the microstructure �the order pa-
rameters� obtained as solutions of dynamic and static problems, respectively.
Rows A and D are for variant 1, rows B and E are for variant 2, and rows C
and F are for variant 3. Columns 1–3 are the temporal sequences for time T
of 1.5�10−12, 4.8�10−11, and 4.2�10−10 s, respectively. In each sample,
red represents each martensitic variant and blue represents the other two
martensitic variants, or austenite.

FIG. 2. Schematic of martensitic microstructure for the dynamic formula-
tion at the final time instant, which contains all three martensitic variants.
The sample is divided into several regions consisting of two martensitic
variants in twin relations. Designated planes between the twin-related vari-
ants coincide with those determined from the crystallographic theory.
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