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1. Introduction

One of the method to satisfy the principle of material frame—-indifference (PMFI) for anisotropic
polycrystalline plastic materials consists in consideration of constitutive equations in some rotating
frame of reference which is equivalent to exclusion of rotation with respect to some configuration.
There are two main nonequivalent ways to exclude the rotations. In the first one rotations are
excluded relative to the fixed privileged configuration V5 (1, 2]. In configuration V; the particles
are in an equilibrium state under zero stresses and deformations and such a state is usually reached
after annealing and recrystallization at high temperature. Only under such an assumption can we
obtain the classical result T = R-® (U (¢'))-R* when we apply the PMFIL. Here T is the Cauchy
stress, ® is some functional, R is the orthogonal rotation tensor and U the symmetric right
stretch tensor in the polar decomposition of the deformation gradient F = R-U with respect
to configuration V5. An objective corrotational derivative associated with a skew-symmetric spin
tensor M = R-R' appears in all evolution equations.

Another approach is related to the introduction of the concept of the plastic spin [3 - 5]. A triad
of directors (the analogue of a crystal lattice for single crystal) which characterizes the orientation
is ascribed to each point of the medium, and it is postulated that all time derivatives must be
taken with respect to variable privileged configuration described by these directors, i.e. rotations
are excluded with respect to directors. Configurations obtained when we fix directors (i. e. which
rotate together with directors) are called isoclinic configurations. An non-symmetric tensor of
plastic deformation gradient appears in the isoclinic configuration and in addition to the flow rule
for plastic strain rate a constitutive equation for the plastic spin has to be given.

As plastic spin does not contribute to the rate of dissipation, it is impossible to derive for it some
extremum principle or constitutive equation using thermodynamics (as for the plastic deformation
rate). The only known macroscopic way is to use the representation theorem [4, 5].
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640 V.1 LEVITAS

In paper [6] a new approach for determination of plastic spin for rigid—plastic materials is suggested
based on stability analysis. Using the postulate of realizability [7] a principle of minimum of
dissipation rate at the time ¢+ At is derived. The aims of the paper are:

e to show that in the general theory we cannot exclude rotations with respect to some fized
privileged configuration. We should introduce some variable privileged configuration (or
additional rotational variable) and exclude rotation with respect to it.

e To apply the principle of minimum of dissipation rate at the time t + At for derivation of
the equations for one or multiple plastic spins for arbitrary dissipative material (elastoplastic,
viscoplastic and so on).

Direct tensor notations are used, in particular, (A-B);, = A;; B* and A:B = A;B" |
superscripts ¢t and —1 denote transposition and inverse operation, I the unit tensor, (A4), =
05(A+ AY), (4), =05(4 - 4).

2. Contradictions arising under excluding rotation with respect to
fixed privileged configuration

We will show that method based on exclusion of rotations relative to fixed privileged configuration
Vo when we apply the PMFI is contradictory, if we do not introduce additional rotational variable.
Let us consider the following thermomechanical process as both a thought experiment and simul-
taneous calculation of the stress—strain state. Let us deform plastically some specimen made from
instially isotropic materials with anisotropic hardening starting from configuration V;. Then after
removing stresses, annealing and the occurrence of complete recrystallization the material has the
same properties as in configuration Vg , but occupies another configuration V4, . But we do not
know about the existence of a new privileged configuration. When we continue a thermomechanical
process and deform a material plastically, we should continue to calculate the objective corrota-
tional derivative or memory functional with respect to configuration V; . Another investigator,
obtaining completely annealed isotropic material in a configuration Vp; , knows nothing about
configuration Vp , because it should not influence the material behaviour (we also knew nothing
about the eventual existence of completely annealed states before configuration V; ). Producing
the same deformation process as we do with respect to Vp; , he will, in contrast to us, calculate
the corrotational derivative or memory functionzl with respect to configuration Vg, . Our and his
results of the Cauchy stress measurements will be the same (because we both produce the same
deformation process starting with the same privileged configuration Vp; ). Our and his results
of stress calculation will differ, because the rotation tensor and corrotational derivative are not
invariant under a change of reference configuration (see below).

For a model with kinematic hardening, a purely mechanical counterpart of the same contradiction
can be shown. Let the back stress tensor L during cyclic loading become equal to zero several
times. All the states with the zero back stress are undistinguished and equivalent; with respect to
which one should the rotation be excluded? With respect to the first one? But we cannot define
experimentally and conceptually which state with L = 0 was the first. The last one? Then the
spin tensor M will have jumps by passing through the state with L = 0 and the results of stress
calculation for L history with states with L = 0 and with infinitesimal L will have a finite
difference.
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Let us illustrate the above reasoning with formulae. In some frame of reference «, let us consider
the motion of a small uniformly deformable volume, described by the mapping » = r(ro, t) ,
where r and ro are the position vectors of the points of the volume at the time ¢t in the actual
configuration V; and in the reference configuration V. A superposition of rigid body rotation
(RBR) is described by the equation

r*=Q-r, (1)

where @ is the proper orthogonal tensor. Under superposed RBR (1) T* = Q-T-Q'; d* =
Q-d-Q'; L" = Q-L-Q'; F* = Q-F, where d is the deformation rate. To exclude rota-
tion with respect to configuration Vp we consider the rotating frame of reference § in which
rs = R'.r, i.e. this relation is being obtained from Eq. (1) at Q = R'. In the frame § (i.e.
for @ = R' ) we obtain Fs = g—;: =R'“F=U;Rs =R"“R=1; T; =R.-T-R.;
ds = R.-d-R,; Ly = R.-L-R, . Evidently, tensors T5, Ls and ds are invariant under
superposed RBR described by (1).

Let there be two equivalent preferred reference configurations Vy and Vg, in which the mate-
rial is isotropic and has the same properties, and configuration Vg; can be obtained after some
thermomechanical or mechanical deformation process with the deformation gradient A (t') and the
temperature variation @ (') with respect to configuration Vy, ending with A = X and 8 = 4.
Then we continue the deformation process, which will be considered simultaneously with respect
to configurations Vp and Vp;. The following kinematic relations are valid :

Fo=Fi-A; U2 =F!-Fo=AF.-Fi-X=2AUZ\; (2)
Ro-Uy=R,-Ui*A = R, =Ry-R; R:=Uy- 21U (3)
M, = R,-R' = Mo+ Ro-R-R'-R}; M, = Ro-R!, (4)

where the subscripts 0 and 1 denote the tensors defined with respect to configuration Vp and
Vo1 correspondingly. Let us consider the model with kinematic hardening. If configurations Vp
and Vp; are equivalent, then at exclusion of rotations relative to each of them the same equations
Ls; = Ads; and Ls; = Adsy should be valid ie.

Ri'L‘R] = AR?‘d'R] ) R:)'L'Ro = AR(!)‘d'Ro or (5)

L+L-M + M .L=Ad; L+L-My+M,-L=Ad. (6)

As according to Eq. (4) M; # My , then Eqgs. (6); and (6); cannot be equivalent, which is a
contradiction. Let us assume that the same equation for the simple solid is valid at excluding of
rotation with respect to configurations Vp and Vp; :

Ts = R.-T-R, = & (U, (') ; Ts0 := RY-T-Ro = @ (Uo (t')) , ©)
where we omit the temperature. We should prove that in general case
T =R -$(U () -Rl #T = Ro-$(Uo (t)) - R}, (®)

despite the fact that Cauchy stress T must be independent of the choice of reference configuration
and this is a conceptual contradiction. To prove this, it is sufficient to find one collaborating example
and we again can use the same model with kinematic hardening, but in functional representation.
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Let us draw a conclusion. If we exclude rotation relative to some fixed privileged configuration
Vo , then it is always possible to create by some thermomechanical deformation process a number
of completely equivalent privileged configurations V; . Assuming the same constitutive equations
for rotations excluded relative to each of the privileged configurations, we cannot obtain the same
equations for the case with rotations. This contradiction shows that in the general theory we cannot
ezclude rotations with respect to some fized privileged configuration.

To overcome the contradiction found we will use some variable privileged configuration, similar
to Mandel’s [3] isoclinic configuration, or additional rotational variable.

3. Extremum principle and equation for plastic spin

Assume that in a fixed frame of reference the constitutive equation is as follows [8]

_ oD (d, F, R) oD
= = —_— = D_l (_ * ) ) 9
T T(d,F,R) A = ; A 5 (9)
where R is some additional rotational variable, D (d, F, R) = T(d, F, R) :d > 0 is the
dissipative function. For elastoplastic materials d is the dissipative part of deformation rate [2, 7).
Let under a superposed RBR (1) Eq. (9) transforms as

QT-Q=T(QdqQ, Q-F, QR =Q.T(d,F,R)-Q, (10)

i.e. dependence (9) satisfies PMFI. By definition, for rate-independent plastic materials T (d, ...)
is a homogeneous function of degree zeroin d, A = 1 and the yield surface ¢ (T, F, I_Z) =0
can be introduced [6 — 8]. Consequently the orthogonal tensor R characterizes rotation of a yield
surface ¢ (T, F, I_i') = 0 in the space T (as well as rotation of surface D (d, F, R) = const
in the space d). This means that tensor R can in principle be measured.

Let us introduce after Mandel {3] an isoclinic frame of reference x in which R = I. To do
this we put Q = R’ in Eqs. (1) and (10) :

T,=TWdy, F); T,=R'T-R; d,=R'-d-R; F,=R"“F. (1)

In the frame of reference x D = D(d,, Fy) and ¢ = Ty, Fy) = 0, ie. by
definition of the frame of reference x dissipation surface and the yield surface do not rotate in it.
Kinematic decompositions have the following form :

F=R-F,; ! = F.-F'=R-R' +R-F,-F'-R; (12)

W o= (F'F—I)Q=Q+Wr’? = R-R'; W, := R‘(FX‘FX-])G'Rt'(B)

Tensors W, and Q are the plastic spin and spin of some privileged orientation in the fixed frame of
reference. We should assume the existence of one additional scalar constraint equation q (d, W,) =
0 which guarantees that the plastic spin is zero when the plastic deformation rate is zero and limits
a modulus of the spin tensor. Function q can depend on additional parameters e.g. plastic strain.
Example of function q for single crystal is given in [6]. As R, = R + (W — W,) - R At, where
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subscript A means that the parameter is determined at the time ¢+ At , then the principle of
minimum of dissipation rate at time t+ At reads as

D(ds, Fa, R+ (W - W,)-RAt) < D(ds, Fa, R+ (W - W) -Rat)
at q(d, W;,))= 0. (14)
The plastic spin WS only varies in the principle (14). The extremum principle (14) can be derived
using the same assumption as for the derivation of Eq. (9), namely the postulate of realizability [6,

7]. In one dimensional case the principle (14) means, that we choose the lowest curve at stress—strain
diagram. At small At the extremum principle (14) can be transformed into

oD oD

0D - - _
W:R = W:(W - W,)-R < = (W-W2)-R at q(d, W) =0. (15)
Additional transformations
aD = = 0D
aRt:(W—Wp)-RzR-aRt:(W—W,,) =
- aD = 0D
= (R-a—R—t>a:(W—Wp) =a:(W-W,); a = (R-akt)a , (16)
lead to
a:(W-W,) <a:(W-W) at q(d, W) =0, (17)
and
a:W, > a:W) or a:W) - max  at q (d, WS) =0. (18)

In contrast to extremum principle [8], @ and W, are not conjugate thermodynamic force and
rate, because W, does not contribute to dissipation rate. As the extremum principle (18) is linear
in W,? , it is clear that without an additional constraint the solution cannot be found. That is

why we assumed the existence of constraint equation ¢ (d, W:,)) = 0 from the very beginning.
An additional reason to introduce the constraint is a necessity to meet the condition W, = 0
at d = 0. Let q be a nonlinear function of W,. In this case from principle (18) the following
dq
3W;
of 7 is determined from Eq. (18);. If we assume as the simplest case that q depends on d and

equation @ = 7 is valid, where 7 is a scalar determined from condition q = 0 ; the sign

W, separately and is an isotropic function of W, , i.e.

9= S| Wy=0,  then  Wy=na= /(. (19)
In Eq. (19) for W, the second equality is valid at @ # 0 which we assume in the following
similar equations as well. We will use this formula for spin, because it is consistent with some
known results (see below). In the given case scalar function 5 completely determines q; example
of function 7 is given e.g. in [9]. But general equation for g can be applied as well. If g is a linear
function of W, , then the minimum in the principle (15) is reached on the boundary of the set C
of all admissible W, .
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If for some d, F and W, a—:D; = a == 0 and this point corresponds to the minimum

of D,then W, = 0. In the case of maximum D again W, = 0, but this state is unstable.
Arbitrary small or finite deviations from point with @ = 0 will progress.

4. Initially anisotropic polycrystal

Let us prove the following statement : when the dissipation function reads as D = D (d,) , then

_ L-d-dT) py_ g
Wﬂ_f(d) |T'd—d'T| _T"\Td dT)v 7’207 (20)
Q=RR =W - n(T-d-dT. (21)

Function P can depend on the number of fixed tensors of arbitrary ranks, characterizing initial
anisotropy, as well as on scalar hardening parameters. To calculate tensor a let us determine

- d Rt'd'R ~ ~ - —
9D g 2P :—(—-——) e (R"d-R + R'-.Ma) =
6Rt de dt d
= 2A'T:R'-d-R = 22T, -R'-d:R, (22)
i.e.
9D a7 ‘R'-d, B-92 _ox1R.T.R'.d=22'Td (23)
3Rt X aRt .4

and according to Eq. (19), Eq. (20) is valid. For isotropic material tensors T and d are coaxial
and according to Eq. (20) W, = 0.

Let us have as an example in the isoclinic frame x D = (dX:E(,:dX)l/2 , where Eq is the
constant fourth order tensor. Then T, = éQJD: = D! Ey:d, and for the yield conditions it

follows ¢ =T, :Eq:T,, — 1 = 0. Alternative expressions in the fixed frame of reference are
D = (d:E:d)'/? T =D"'E:d; ¢=T:E:T-1=0, (24)

where E := R x Ey := E*m» (R-ek) (R-ee:I (R-em) (R-en) is rotated with the tensor R
tensor Ep := EX¥™ e, e e, €, . Consequently tensor R characterizes a rotation of the ellipsoidal
yield surface in a stress space T'. Eq. (21) determines such a rotation. When vector T is directed
along the symmetry axes of ellipsoid, then vectors T and d are collinear and again W, = 0.
If vector T is directed along the shortest axis of the yield surface, then state with W, = 0 is
stable; in other cases small or finite perturbation will lead to a deviation from state W, = 0.

If in isoclinic configuration yx D = D(d,, F,), then the calculation of tensor a results in
oD oD
= d-T. R iy —-)) .
W, n((Td T.d) + 0.5 (aFF Pz (25)
. ép ., 8D . . . .
When D depends on F in terms U, then 5F F' = EYii -U. If D is an isotropic function

D
of U, tensors U and gﬁ are coaxial and Eq. (25) reduces to Eq. (20).
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5. Theory with internal variables

Assume that history dependence of the D is taken into account with the help of internal variable
L , which is for example the back stress tensor (L = L'): D = D (d, L, R) =7D(d,, Ly) .In
the frame of reference x we assume the same equation as at small strains Lx = Ad, ,thenin
the fixed frame of reference

L+L1-Q+0Q'-L=4Ad, Q=R-R'. (26)

. oD . . . :
To determine R let us find the terms proportional to R in expression for D :

I
‘ D . 0D . o oty o d(RTd-R) ap .
D= gg i+ gp_ilx=) TX.(R -d-R+——Tt——d tgr Ad =

. - : D
= A'T:d+2)'T,-R'-d-R + Z—L—:Ad. (27)
Eq. (22) was used. As the term related to L does not produce in Eq. (27) the terms proportional
to R, then equations for determination W, will be the same as for the case with D = D (d,),
i.e. Egs. (21)-(23). The same equations are valid in the case of several internal variables with the
evolution equations of type Eq. (26). If a material is initially isotropic and

D=Fd)+Lid=F(d,) + Ly:d,, (28)

where F is the isotropic and homogeneous degree one function of d, then

_dF

oOF oOF
T=55+

L, T.d - d-T = (ﬂ--d—d-ﬂ) +(L-d-d-L). (29

. . OF .
For isotropic F tensors 54 and d are coaxial and can be transposed, so consequently

the first bracket disappears. Thus for materials of type (28) we arrive at the well-known and
well-investigated [4, 5, 9] equation :

W,=1n(L-d-d-L), Q=W -n(L-d—-4d-L). (30)
The results of works [5, 9] show that with proper choice of a scalar—valued function n Eqs. (26),
(29) and (30) at %g =k l—d—| allow us to describe some model situations.

6. Theory with multiple spins

The idea of multiple spins is presented e.g. in papers [10, 11]. Let us assume that the dissipation
function depends on several orthogonal tensors R; and R; in the following form

it

D(d, Ri x Eo;, R;-Ly;-R;) =D, Ei, L;), (31)

J
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- -t -
where L; = R;-Ly;-R; , E;, = R; x Ey, , Ey; = const; . The fixed tensors of
arbitrary order E¢; characterize initial anisotropy, the internal variables L; describe the strain
induce anisotropy. Consequently each tensor Ego; or L,; rotates with its own rotation tensor

R; or R; . For tensors L; the following evolution equations are given

Lx]' = Ajdxj; de = R;di‘z] or

L]-+L,~owj +U;'Lj=l4jd, w; = R,R; (32)
For each Q; = ILZ,- 01_3: and w; we can define a corresponding plastic spin by formulas

W=0 +W,; W=uw+W,. (33)

To determine spins W, and W,,j we need the existence of scalar constraint equations g, (d, W,;) =
0 and §; (d, ij) = 0 or their particular form

G = fi(d) — |Wy|=0; 4 = fid) - [Wy|=0. (34)
The principle of minimum of dissipation rate at time t + At reads:

=t

D(ds, Ria x Eoi, Rja-Lya-Rj,) <D(da, Ri x Eoi, Ry -Lya-Rj): (35)

- - - ~ 0 =~ ~ 0 ~
R}, = R + (W - WS) -R; At; R, =R;+ (W-W,) -R;at (36)
under constraints (34). For infinitesimal At for each ¢ and j we obtain extremum principles:
oD =0 : = 10 .
3L (L;- (W - W) + (W' - W) -L;) — min; (37)
aa_ED_‘. E? — min; where E! = E;"* e e1e, €. (38)

is the transposed tensor E; = E'f’m""' € €/ €., €,... . From the principles (37) in the same way
as in Eqs. (22) and (23) we obtain

oD .

oD 50 . ~ . OL; ! R

a_L—j -L; :W,; — min; W, = —f;(d) 730 N1 (39)
(72 5),

As an example we consider an initially anisotropic polycrystal with kinematic hardening, i.e.

D= (d:E:d)'* + L:d = d,:Eo:d,)""* + L:d; (40)

L+Lw+w-L=Ad; d, =R'-d-R, (41)
iie. _tfinsor E, characterizing initial anisotropy and the back stress tensor L rotate with the spins
R-R° and w respectively. For plastic spin W, related to L we can use directly Eq. (39);

. Ld-dL
W, = f(d) Td—d1I (42)
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aD
For the spin W, connected to E, we can also directly apply Eq. (38) at FY i dd , but a
more simple way can be used. According to Eq. (9)
E:d Eq:d
T=—"— +1L; Ty = ——%*575 + Ly; 43
d:E:d)'/? X (dy:Eo:d,)? X (43)
!, g N1/2
T,-L,= E; Dy = (dy:Eo:d))/'*; (44)
Then
Sy =
8D . 8D, . 9D, d (R -d'R)
— R = —:R= t—_ 7| =
R OR ddy dt d
= (Ty - Ly): (R“d.iz + iz‘-d-k) =2(Ty - L,) -R'-d:R; (45)
R. a?t =2R-(Ty - L,)-R'“d=2(T - L) -d; (46)
OR
T-L)-d-d-(T-1
W, = 1) (#7)

(T-L)y-d-d-(T - L)’

As all the tensors in Eqgs. (21), (26), (30), (41), (42) and (47) are independent of the reference
configuration, the contradiction mentioned in Section 2 and related to the appearance of several
equivalent fixed preferred configurations (e.g. with L = 0 ) does not arise. The deformation
gradient in Eq. (25) depends on the choice of reference configuration. The question of whether it
is possible in this case to avoid the contradiction revealed in Section 2 will be treated elsewhere.

7. Concluding remarks

1. The fundamental contradiction in the theory of constitutive equations is revealed for poly-
crystalline solids: in the general theory it is impossible to exclude rotation relative to some fized
privileged configuration (which e.g. isotropic for an initially isotropic material) when the PMFI
is applied. The reason is related to the possibility of creating by some thermomechanical process
a number of equivalent privileged configurations and it is impossible to get the same constitutive
equation with respect to each of these privileged configurations. In the classical theory of simple
materials there is no way to introduce a fading memory in terms of rotations about the "old ”
privileged configuration when a new one is created during the deformation process, because there
is no constitutive equation for rotation.

2. To overcome the above contradiction we assume that the constitutive equations depend
additionally on some rotational variable, for which some equation will be derived. This is equiva-
lent to the problem of finding some variable privileged configuration, similar to Mandel’s isoclinic
configuration. Consequently, we arrive at the problem of determination of equation for plastic spin.

3. The principle of minimum of dissipation rate at the time t + At is formulated and applied
to derive the unique equations for one or multiple plastic spins for polycrystals. This principle can
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be derived using the same assumption as for the derivation of Eq. (9), namely the postulate of
realizability {6, 7]. One additional scalar constraint equation is necessary which guarantees that
the plastic spin is zero when the plastic deformation rate is zero and limits a modulus of the spin
tensor. A number of concrete expressions for plastic spin are derived for polycrystals with initial
and strain induced anisotropy, represented by internal variables and material tensors of arbitrary
order, with multiple spins.

Our approach allows us to derive much more concrete results, than the method based on the
representation theorem [4, 5]. For example, if W, = W, (T, L), where L is the symmetrical
second order tensor (an internal variable), then from the representation theorem it follows [4, 5]

Wy =m(LT)y 4 e (L2T) o (LoT) o (D117 s (T-2T) 0 (49)

where 7; are the functions of various invariants. To find experimentally five functions is unreal,
that is why only the first term in Eq. (48) is used. For three and more arguments the representation
theorem gives very bulky formulas which cannot be concretized experimentally. Moreover, explicit
enumeration of the arguments of a W, function is a very strong assumption, because many skew-
. 17} . .
symmetric tensors like R- (U‘U_l) ‘R'; R. (-a——l—('; -U) -R' can contribute to the plastic
a

. a
spin.

We do not assume explicitly the arguments of function W, ; the final result is obtained in terms
of the dissipation function for arbitrary initial and strain induced anisotropy described by multiple
tensorial variables of arbitrary order. For many particular cases the expressions for plastic spin look
very simple. For the case with an internal tensorial variable of second order Eq. (30) derived above
is equivalent to the first term of Eq. (48) obtained with the help of the representation theorem.
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Corrigendum to

”A NEW LOOK AT THE PROBLEM OF PLASTIC SPIN BASED ON STABILITY ANALYSIS”
by VALERY 1. LEVITAS
published in J. Mech. Phys. of Solids, 1998, 46, No. 3, 557-590.

It was written before Eq.(60) of the above paper, which is
f(d) at a#0, (1)

a

Wp:’f]a or Wp:m

that the sign of the scalar 1 has to be determined from the extremum principle (58) of the paper,

i.e. from condition

a:W, — max at q=fd) — | W,|=0. (2)

Here W, is the skew-symmetric plastic spin tensor, a is the skew-symmetric tensor defined in the
paper, d is the deformation rate, and f is some scalar function.

However, as according to constrain q = f(d) — | W, |= 0 one has f(d) > 0, then the sign in
Eq.(1)y is chosen. This sign corresponds to 1 > 0, which was explicitly written in Eq.(100) of the
paper. It appears, that this is the wrong sign. Indeed,

| W, P=W,: W, = na:W, =—na:W, >0, (3)

where superscript ¢ denotes transposition. It is evident that at 7 > 0 one has a:W, <0 which
corresponds to a:W, — min and is wrong. Condition 7 <0 results in a:W, > 0, which agrees
with the extremum principle (2).

The easiest way to correct this error is as follows.

1. To consider n < 0 in all equations of the paper.

2. To assume

q=[fd)+[W,[=0 (4)

instead of q = f(d) — | W, |= 0.

3. To use

g = fid+ |[W,|=0 and G4 = j(d)_|_|ﬁ/pj|:() (5)



instead of Eq.(114) of the paper, i.e. the functions f, f;, and f] are negative.

It was mentioned in the paper by Y. F. Dafalias (J. Mech. Phys. of Solids, 2000, 48, 2231-2255)
that general approach developed in our paper under consideration cannot accommodate the need
for negative n in order to simulate the experimental data by Kim and Yin (1997). After the above

corrections, this contradiction disappears.



