Inclined cables in various engineering applications (stay-cable bridges, power conductors, etc.) are prone to damage due to different kinds of wind-induced loads - e.g., vortex-induced vibration (VIV), rain wind-induced (RWI) vibration, flutter, etc. Galloping is an aerodynamic instability characterized by low-frequency, large-amplitude oscillations of cables normal to the wind direction. The galloping phenomenon was first observed for ice/sleet coated power conductors and explained by Den Hartog as caused due to an aerodynamic instability. Dry inclined cable galloping, often referred to as dry cable vibration, can occur for inclined circular cables at high wind speeds even when the cross-section remains axisymmetric. The cause of this instability is understood to be the asymmetry in the flow because of the relative yaw between the cable- and wind directions.